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SUMMARY

The high-order homogenization method for improving the accuracy of nodal
diffusion calculations for a reactive system was implemented into a two-group model.
The method corrects the generalized equivalence theory (GET) homogenized parameters
for the effect of the core environment by expanding the homogenized cross sections in
terms of the current-to-flux ratio at the node interface. The cross sections are updated
(corrected) within the nodal calculation by using precomputed data for each unique
assembly type, together with the current-to-flux ratio at the node interface. Two codes in
1-D two-group were developed to perform the precomputation and the nodal calculations:
a fine-mesh lattice code and a nodal diffusion code with a bilinear intra-nodal flux shape.

It was shown that the perturbation expansion series for the flux, eigenvalue and
the homogenized cross section converge in the multigroup case. This is new in that it has
not been shown before in the literature. The benchmark configurations consisting of two
types of BWR assemblies in two-group slab geometry were analyzed for various
magnitudes of the perturbation in the boundary condition. The perturbation method
achieves an excellent accuracy: the flux RMS error is less than 0.5% in both groups and
the reference homogenized cross sections are almost exactly reproduced.

The testing of the nodal code was done for five benchmark configurations typical
of a BWR, from mildly to highly heterogeneous. Three of these configurations were
developed in this phase. It was concluded that for testing the applicability and the
accuracy of the homogenization method these new benchmark problems that are more
realistic are needed. Each assembly in the new benchmark configuration is of the GE-9
bundle design. The two-group cross sections for the assemblies used in the new
benchmark problems were generated from the infinite-medium solution of a fine-mesh
two-dimensional model of the 8 x 8 GE-9 fuel assembly with eight burnable gadolinium
absorber rods, by using the generalized geometry collision-probability code HELIOS. A
technical paper containing the detailed description of the benchmark problems as well as

both diffusion and transport theory results will be published during the phase 3 period.

vi



In summary, it was shown that the homogenization method provides excellent
results in the two-group theory. For all of the analyzed configurations, the node-
integrated flux is within 1.16% of the assembly reference (fine-mesh) flux in all nodes for
each group. There is a significant improvement from the zeroth order case (standard
GET), in which the node-averaged flux has a large error (e.g., up to 8% in group 1 and up
to 14% in group 2 for configuration 2). It was also shown that the reconstructed fine-
mesh flux (or equivalently the power distribution) in the core approximates the reference
value very well. The reference flux distribution is almost reproduced by the third order
perturbation approximation.

The works performed in phase 1 period were published in two technical papers;
one in Annals of Nuclear Energy and one as an ANS Transaction summary (1. Scott M.
McKinley and F. Rahnema, “High-Order Cross Section Homogenization Method,” Ann.
Nucl. Energy, 29, 875-899(2002); 2. F. Rahnema and Scott M. McKinley, “Coarse-Mesh
Nodal Methods Corrected by Boundary Condition Perturbation Theory”, Trans. Am.
Nucl. Soc., 84, 93 (June 2001)). The phase 2 works will be summarized in two technical
papers to be submitted in summer 2002; one on the benchmark problems and one on the
multigroup numerical developments. Additionally, an ANS summary has been accepted
for presentation at the ANS summer 2002 meeting (Germina Ilas and F. Rahnema,
“Applicaton of High-Order Boundary Condition Perturbation Theory to Two-Group
Diffusion Problems”, Trans. Am. Nucl. Soc., accepted (June 2002)).
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Chapter I

Introduction

1.1. Background

A high-order cross section homogenization method [9] based on the boundary
condition perturbation theory has been recently developed to improve the accuracy of
nodal diffusion methods within the context of the generalized equivalence theory (GET)
[1]. The method corrects the homogenized parameters and discontinuity factors for the
effect of the core environment. The homogenized parameters, which are expanded in
terms of the node surface current-to-flux ratios, could be corrected to an arbitrary order of
accuracy for the effect of the core heterogeneity. The reconstructed fine-mesh flux and
power distributions are a natural byproduct of this method. For completeness, the basic
formalism of the high-order cross-section homogenization method is described below.
More details can be found in references 8 and 9.

The perturbation method developed by McKinley and Rahnema [8] estimates the
change in the solution of a reactive system due to a change in the boundary condition to
an arbitrary order, in the diffusion approximation. The formalism is derived starting from
the steady-state diffusion eigenvalue equation for an initial (unperturbed) state of the

system:
Hp,(%.E)=2,Fp,(x,E).,  XeV (1-1)

where H is the diffusion operator (accounting for leakage, absorption and in-scattering), F

is the production operator, Ao is the eigenvalue, and ¢, is the initial flux. The
unperturbed flux is normalized such that its integral over the phase-space (X, E ) is unity.

The boundary condition associated to Eq. (1-1) is:



aO(X,E)ﬁV(BO(X’E)+bO(£,E)50(£’E)=0’ feaV (1_2)

with X and E the spatial and energy variables, and 7 the outward unit normal. The
parameter by becomes the current-to-flux ratio at the boundary when a, is taken as the

diffusion coefficient. For a perturbation in the boundary condition of the form:
a,(X,E)i-Vo,(%,E)+ (b, (%, E)+ &b, (%,E)p,(X*,E)=0, XeoV (1-3)
the eigenvalue equation (1-1) is written as:
Hp(x,E)=1 Fp(%,E), XeV (1-4)

where A is the perturbed eigenvalue and ¢ is the perturbed flux normalized to unity. It is

assumed that the perturbed flux and eigenvalue can be expanded in terms of a smallness

parameter ¢ as:

A=Ay +El + &4 -+e" A, +ole") (1-5)

O =0, +EP, +52g52 ", +0(«9"+1) (1-6)

These expansions are used in equation (1-4) and the expansion coefficients are obtained,
by equating the terms with the same power of &, as functionals of the flux. The high-
order corrections for eigenvalue and flux in Egs. (1-5) and (1-6) are calculated based on
the solutions for the forward and adjoint flux of the initial (unperturbed) state, and a

Green’s function defined by the equation:

(B =2, F (3,5, E) = 0(3 - % )0(E - E, ) -2, (%,.E, ), %.%, €V (1-7)

a,(%,E-V¥(X,%,,E)+b,(x,E)¥Y(X,%,,E)=0, %%, €dV



Green’s function ‘P()?,)?O,E ) is required to satisfy the following uniqueness condition:
(P(x,%),E)Fp,(X,E))=0, %%, eV (1-8)

In (1-7), H  and F" are the adjoints of the operators H and F from Eq. (1-1). The brackets
in Eq. (1-8) stand for scalar product over the phase-space (X, E ).

The expressions of the high-order corrections for flux and eigenvalue are:

A= M (1-9-a)
(@ F®, )

i (poem ) ~m(@ o) (1-9:b)
. (2, Fp, )

<§50*3¢_’n—1> _/11<¢0*F¢n—1>_/12<60*Fan—2>“._/1n—1 <§30*F§31 >

= s @JF@ > ,  n>2 (1-9-c)
?,(%,)=—(¥(%.%, ), (X)), (1-10-a)
2, (%)= 4, (W (5,5, )Fp, (%)) - (¥(%,%, Jep, (%)) (1-10-b)

In reference 8 it is shown that ratios of arbitrary functionals of the flux solution
can be expanded in terms of the smallness parameter, similar to the expansions for the

eigenvalue and flux (Egs. (1-5) and (1-6), respectively). It is shown that this result can be



used to homogenize phase-space parameters such as cross section, which can be defined

as:

_ 2 n n+l
O,=0),+&0,,+E0,,+& O'n’g+o(g ) (1-11)
with the expansion coefficients given by:

%, E)g, (%, E)).
o _(ol®E)p,(%.E))., (1120

(@(%.E),,

R EREE), o 5,
e <¢70(;59E)>;,g

(1-12-b)

O, = ’ = (1-12-¢c)

o - (o(x.E)p,(%.E)), , - ao,g_<(7,:(5e, E)., 0, (@EE),, (1120
’ <¢O(X’E)>;,g

The subscript X outside the brackets in the above equations stands for integration over all
space, and the subscript g means integration over energy from E,.; to E,.

Based on this high-order boundary condition perturbation theory, the high-order
cross section homogenization method developed by Rahnema and McKinley [9] expands
the nodal parameters in terms of the node surface current-to flux ratio. The procedure is
as follows:

— The nodal calculation is performed by using the infinite medium homogenized
parameters (zero current boundary condition), and the solution is used to calculate

the current-to-flux ratio (y) at each node interface



— This ratio is used as a perturbation of the boundary condition in the high-order
boundary condition formalism that evaluates the high-order correction for the
homogenized parameters in each node

— The nodal calculation is redone with the corrected homogenized parameters, and
new y’s are determined

— The iteration continues until convergence is achieved

1.2. Summary of Phase 1 Work

The equations for correcting the homogenization parameters (see Eqgs. (1-12)) for
the core environmental (assembly surface leakage) effect were developed using the high-
order boundary condition perturbation method [8]. A coarse-mesh code with a bilinear
flux shape was written for one-speed, 1-D geometry to test the correctness and the
accuracy of the high-order homogenization method. The method was benchmarked using
two one-dimensional configurations (see Figure 3-1) typical of mildly to highly
heterogeneous BWR cores. Each core is made up of two unique alternating assemblies
lined up in a one-dimensional array with a zero-current external boundary condition.

The first test was to take each assembly from configuration 2 (the more restrictive
example) and use the boundary condition perturbation theory to determine the
homogenization parameters for the exact albedos given from the reference case. A fine-
mesh solution of the full core case was taken as the exact (reference) solution for the flux
and eigenvalue. By using the exact flux distribution, the right and left face albedos for
each assembly were determined. The results [9] for assembly 1 in core 2 are shown here
in Tables 1-1 and 1-2 as an example. Table 1-1 shows the values of the corrected
eigenvalue and homogenized cross sections as well as the flux RMS. Table 1-2 shows

the values of the heterogeneous discontinuity factors y (see Eq. 2-40) for the left and

right boundary of the assembly. As seen from the tables, the accuracy improves with
increasing the order of the expansion terms. The fourth order expansion seems sufficient
to significantly reduce the errors in the homogenized cross sections. The error in the

heterogeneous discontinuity factor y becomes insignificantly small when seventh order
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perturbation theory is used. The fourth order corrected flux models very well the

reference flux distribution in comparison to the unperturbed (zeroth order) flux: 0.2%

flux RMS in the first case versus 20.2% flux RMS in the latter case.

Table 1-1. Analysis of Assembly 1" in Core 2 for One-Group 1-D

Unperturbed 1 Order 2" Order 3" Order Exact
(Infinite-
Medium)

A 0.7248 (19) 1.0006 (-12) 0.8414 (6.2) 0.9230 (-2.9) 0.8969

Flux %RMS 20.2 9.7 3.9 1.2° -

D 12616 (-022) | 1.2570(0.14) 1.2594 (-0.05) 1.2583 (0.03) 1.2588

G 0.02249 (1.5) | 0.02303 (-0.84) | 0.02275(0.42) | 0.02288(-0.16) | 0.02284

Vo 0.03103 (1.8) | 0.03192(-0.99) | 0.03145(0.49) | 0.03166(-0.18) | 0.03161

" Type 1 fuel assembly with left and right albedo of 0 and 0.13321 respectively and 1200 meshes
2 4™ order = 0.2

Table 1-2. Heterogeneous Discontinuity Factor y for Assembly 1" for One-Group 1-D

Perturbation Order Boundary %ZError
Left Right Left Right
Exact 1.1575 0.6297 - -

0™ (o0 -medium) 0.9907 0.9907 -14.4 57.3
1 1.2312 0.4475 6.4 -28.9

2n 1.1311 0.7090 23 12.6

31 1.1629 0.6023 0.5 4.4

4 1.1584 0.6357 0.1 0.9

5t 1.1552 0.6309 0.2 0.2

6" 1.1586 0.6278 0.1 0.3

7h 1.1567 0.6311 -0.1 0.2

*Type 1 fuel assembly in core 2, with left and right albedo of 0 and 0.13321

respectively and 1200 meshes




Table 1-3. Assembly Integrated Flux for Configuration 2

Order of Assembly Reference Nodal Error® Reconstructed Error

Perturbation Position (%) (%)
1 2.370 1.082 -54 2.872 21

0 2 0.658 0913 39 0.250 -62
3 0.357 1.057 196 0.310 -13

4 0.173 0.898 418 0.105 -39

1 2.370 2.827 19 2.823 19

1 2 0.658 0.453 -31 0.454 -31
3 0.357 0.188 -47 0.188 -47

4 0.173 0.068 -61 0.068 -61

1 2.370 2.281 -3.8 2.281 -3.7

2 2 0.658 0.722 9.8 0.720 9.5
3 0.357 0.381 6.8 0.374 5.0

4 0.173 0.200 15 0.196 13

1 2.370 2.465 4.0 2.487 4.9

3 2 0.658 0.641 -2.6 0.650 -1.2
3 0.357 0.304 -15 0.311 -13

4 0.173 0.144 -17 0.146 -16

1 2.370 2.382 0.5 2.386 0.6

4 2 0.658 0.666 1.2 0.671 1.9
3 0.357 0.360 0.9 0.366 2.7

4 0.173 0.175 0.9 0.177 2.2

"Defined as 100*(calculated-reference)/reference




It was found that the new homogenization method is very accurate as compared to
the standard homogenization technique based on the generalized equivalence theory. The
results of the nodal calculations [9] for configuration 2 with the homogenized parameters
corrected up to the 4™ orders are shown here in Table 1-3. Only the first four assemblies
were shown due to symmetry. It can be seen that there is a large improvement compared
to the zeroth order (standard GET) both for the assembly nodal flux as well as for the
assembly reconstructed flux. The large difference (of up to 418%) between the assembly
nodal flux and the assembly reference flux is reduced to less than 1.2% at the fourth
order. The results are similar for the assembly reconstructed flux, where the large zeroth
order difference (up to 62%) is reduced to less than 2.7% at the fourth order.

A paper describing the method and the one-group 1-D benchmark results was
published in the May 2002 issue of Annals of Nuclear Energy. Also, a summary of the
work was presented at the ANS meeting in June 2001.

1.2. Description of Phase 2 Work

The accomplishment of the second phase work is the implementation of the high-
order cross section homogenization method in the two-group methodology and, in
particular, showing that the perturbation expansion series converge for the multigroup
case. When going from one-group to two-group, the forms of the equations to be solved
and of the expressions to be evaluated become more complex, due to the coupling
between groups. There are also complications that arise regarding the numerical methods
used to solve these equations. The most difficult task is the computation of the Green’s
function. The methods used to obtain the two-group solutions of the specific equations,
in particular the one for the Green’s function, are presented in chapter II.

Here it is shown that the perturbation expansion series for the flux, eigenvalue and
homogenized cross-section converge for the two-group problems, by using as a
benchmark configuration an assembly typical of a BWR in slab geometry. A two-group
nodal diffusion code with a bilinear intra-nodal flux shape is developed for the

implementation of the high-order homogenization method in the context of the

8



generalized equivalence theory. The code is tested by using as a benchmark a
configuration typical of a BWR in slab geometry. The two types of configurations
discussed in the previous year report for one-group are also analyzed here in a two-group
approach. One of these configurations (core 1) is very simple, with not much variation of
the flux across the core. The other one (core 2) is more complex, with large flux
gradients at the nodal interface and large variations in the flux distribution. In order to
assess the applicability of the new homogenization method on more realistic cores, with
many different types of assemblies, three new benchmarks typical of a BWR in slab
geometry were developed. These newly developed benchmark configurations, as well as
the other two configuration mentioned before are described in chapter III. The results

obtained are presented in chapter IV, and concluding remarks are presented in chapter V.



Chapter 11

Method

In the multigroup case, the three equations (for the forward flux, the adjoint flux,
and Green’s function of the unperturbed state of the system) whose solutions are required
to evaluate the expansion coefficients for flux, eigenvalue, and homogenized cross-
section have a more complicated form than for the one-group case, due to energy group
coupling. The numerical solution method for the multigroup Green’s function becomes
substantially more complicated in the two-group case and as a result it consumed a large

portion of the effort spent in phase 2 of the contract work.

2.1. Equations in the multigroup case

The equation for the forward flux, Eq. (1-1) of the unperturbed state becomes a

system of G coupled equations, where G is the total number of energy groups.
H ¢0g( ) ZF?Og( ) EEV’ gzlaG (2'1)
with the boundary condition expressed as:

a,,(X)i-Vo,,(¥)+b,, (¥, (¥)=0, eV g=1..G (2-2)

The index g stands for the energy group, and the operators H, and F, are defined by:

5&&

2
H,=-VD (3)V+o, Za (2-3)
=1

10



2
F,= Zg(‘;é)zvo-fg'(‘i:)
g'=1

(2-4)

where D,, o,, and y, are the diffusion coefficient, the total cross section, and the

g 2

fission spectrum in group g; o,.,

is the scattering cross section from group g’ to group g,

and vo ,, is the product of the number of neutrons per fission and the fission cross section

in group g.
The adjoint flux for the unperturbed state is given by:

k3

H,p,,(¥)=A4F,0,, (%), *eV g=1..G

g7 0.g

with the corresponding boundary condition expressed as:
a,,(¥)A-Vg,,(3)+b,, (¥)p,,(¥)=0, XeoV g=1..G

The adjoint operators H, and F, are defined by:

2
H,=-VD, (iV+o,( Z‘;a

sgg'

2
F; =vo, (0% 2,(6)
g'=1

In a two-group case, Green’s function equation (1-7) becomes:

(H:{_/IOF;)‘Pgh(‘)_C.’;CO):5(56_550)55’11_50,}1()?0)’ xeV g,h=1,2

with the boundary condition

11

(2-5)

(2-6)

(2-7)

(2-8)

(2-9)



a,, (¥)i- V¥, (3,5, )+ b, (¥)P,,(%,%,)=0, FeoV gh=12 (2-10)

The symbol 6,1 in (2-9) is the Kronecker function defined by:

Lh=g

0, = (2-11)
£ |0h2g

The expressions for the expansion coefficients in the eigenvalue and flux expansions that

have the energy as a continuous variable (see 1-9 and 1-10) are particularized to two-

group as shown below:

2
Z<§70ig7g¢70,g>

A =5 : (2-12-a)

2
Z(<50*,g7gahg>s ﬂ<¢0gF ¢1g>)

A, = . (2-12-b)
Zl<(70"‘,gFgao,g>
poe
i(<¢_)0*,g7/g¢n71,g> -4 <(P0 s ¢7n71,g> A <(P0 s ¢n72,g> =4, <(P0 s ¢71g>)
A, = 5 , n>2
Zl<¢og (90,g>
p=
(2-12-¢)
2
P (3) == (¥, (5.5, )y, 2, (%)) . h=12 (2-13-a)
g=l s
2 2
(%)) = 4 D (W, (5.5, )F, 2, (8) = 2P, (B % 2, (), =12 (2-13-b)

—

g= g=l

12



The brackets in the above expressions stand for scalar products over the volume, the
subscript s outside the brackets indicating that the integration is over the boundary region

of the volume. The parameter y, is the perturbation of the boundary current-to-flux ratio

for group g, (70*, . (%) s the adjoint flux in group g for the initial state, and @, , (x) is the

k™-order flux in group g.

2.2. Method for the Green’s Function in Two-Group

The main difficulty when extending the method to two-group is in obtaining the
solution for the Green’s function, which in two-group 1-D becomes a vectorial function

(there are four components of ‘¥, (¥,%,) ), whereas in one-group 1-D is a scalar function.
For fixed values of the spatial variables X and Xx,, there are four components (equal to
the square of the number of groups) of the function ‘Pgh()?,fo) which need to be

determined, and therefore four coupled equations, compared to only one equation in the
one-group case. By writing Eq. (2-9) for values of the indices g and h over all range

(g,h=1,2), one gets the following four, two by two coupled, equations:

0,0 £+ 2000, (R, (B (2.5,)= 52 -7,) -7, (7,) el
|-_ VD, ()?)V + O-rz(f)_;tovaﬁ ()?)Zz (q)J\{Izl(xafo)_
[0521 (;C)—}_ lovafz (’?)751 ;C)]LPII X, X, ) =0, (3?0 ) (2-14-0)

13



|-VD,(ZWV +0,,(¥)- Ao, (3)r, (3P, (3.5,)-

(0,1, (&) + Agver 1y (8, (B (5,5, ) = -, (5, ) (2-14-c)
[-VD,E)V + GrZ(i)_X'OVO-fZ(';C’)Z2(_.)J\P22(_>’ %)

o2 (8 v, O, (B (7.5, = 58 -5,)- 715, D

where o, is the removal cross section. Equations (2-14-a) and (2-14-b) constitute a
linear system for the unknowns ‘¥, (¥,%,) and ‘P,,(¥,%, ), whereas Egs. (2-14-c) and (2-
14-d) constitute a similar system for ¥,,(¥,%,) and ¥,,(¥,%,). By discretizing the

equations in slab geometry (integrating over the x variable), one gets two systems of

matrix equations with unknowns X, X5, Y, and Y>, as shown below:

{Ale(j)—Ble(j)zD(j)—cl(j)C

2-15

AzXz(])_BzX1 ])=—Cl(])C ( )
AY()-BY,(j)=D(j)-¢,(j)C

2-16

{ Azyz(j)_BzYl ]):CZ(J)C ( )

The system (2-15) corresponds to Egs. (2-14-a) and (2-14-b), whereas the system (2-16)
corresponds to Egs. (2-14-¢) and (2-14-d). A; and A, are NxN tridiagonal matrices, B,
and B, are NxN diagonal matrices, D, C, X, X5, Y|, and Y, are N- component vectors,

and c;(j) and cx(j) are constants, with j as a mesh index for x¢ (j=1,..,N).

XlT(j): [\Pll(l’j)’lpll(z’j)'”\Pll(iﬂj)”"Pll(N’j)] (2-17)
X5 ()= (1) 2 (2.7) o 1)+ ¥, (N )] (2-18)
YlT(j): [‘Plz(l,j),‘Plz(Z,j)---‘I’lz(i,j)---‘Plz(N,j)] (2-19)

14



YzT (]): [lpzz (laj):‘{lzz(zaj)"'lez(iaj)"'\Pzz(st)] (2-20)

DT(j):[alj’52j"'5(j'“51\9'] (2-21)

C"(j)=[Ax,,Ax, -+ Ax, -+ Ax, | (2-22)

The components of the vector C are the mesh lengths, and those of the vector D are

Kronecker functions (see Egs. (2-11)). The diagonal coefficients for matrices B, and B,
are given by:

. o A .
b, = ﬂova_’ﬂ;(; +0., Jg=1---N

S (2-23)
b; = AVO 21 + 0y i=1N

The nonzero coefficients of matrices A; and A; are defined by:

1 2(Dj /A, XD /A,

“ =D a )+ (DA, ) i=2N

c o 2pia)pitiaL) _
Y = pia )+ (0 a,,) =leN- (2-24)
a;,i = ail—l,i +a,‘l,;+1 +A,~(O'i1 _/7’0‘/(7_;'1)(1) Ji=2---N-1

: 2D/, \Di /A, ) o
“u =T ora)+ (o aL,) —2en

2 __2(D£/AiXD£H/Ai+1) T—=1... — -
Y T Dl )+ (08 a,,) S o

2

ii

2

“ +a,-,i+1+A[(0'j2—/7,0va;2;(2) ,i=2--N-1

2
a.

i—1,i

The constants c; and ¢, are given by:
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()=, (j) (2-26)

The coefficients for which the expressions are not shown in the above equations are those
that correspond to boundary meshes (i=1,N). These expressions cannot be written for a
general case unless the boundary condition is specified. The discretization of Egs. (2-14)
is presented in more detail in Appendix B.

The systems (2-15) and (2-16) need to be solved for each j=1,2,...N. In order to

do this, they are written in a compact form, as shown below:

B T I

LTl e
Ax(7)=r()=a (), (2-29)
4Y()=7 ()= GV, (2-30)

with A a 2N x 2N band matrix, X,Y,V; and V; 2N-component vectors. In solving Egs.
(2-29) and (2-30) one must account for the uniqueness condition (1-8), which in two-

group is expressed by the two following equations:

< " xxo ;(1 ZVO'J,& x)(po +‘{’21 X, X, ;(2 Z!/af )(poé > = (2-31)

<12xx0 ;(1 ZVO'fg )%g +‘P22xx0 ;(2 Zvafg );oog >— (2-32)
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By discretizing the Egs. (2-31) and (2-32) in slab geometry one gets:

™M=

(\Pll i,j Z1 Zvo-jg )590g()+\P21(1 J Zz Zvafg )DOg()JA =0,j=L..N (2-33)

i=1 g'=1 g'=l

Z[ Uy Z1 ZVG/g }Do‘g()+\}lzz(l J Zz Zvafg )%g()JAf =0,j=L..N (2-34)

where 1 and j are mesh indices for xand x,, A,is the length of mesh i, and N is the total

number of meshes. Equation (2-33) and the system (2-29) have as unknowns the

components of the adjoint Green’s function ¥, (i, j) for which g=1,2 and h=1. Equation

(2-34) and the system (2-30) have as unknowns the components of the adjoint Green’s
function ¥, (i, J ) for which g=1,2 and h=2.

Two approaches have been followed to solve for Green’s function. Let’s consider
the system (2-29) with the corresponding Eq. (2-34) expressing the uniqueness condition.
The first approach was to consider Eq. (2-34) as an additional equation of the system (2-

29). The resulting system is overdetermined:

A,x, =b, (2-35)
where A,is a (2N+1) by 2N matrix, and x,and b, are (2N+1)-length vectors. The
system (2-35) can be solved by using a least square method, which consists of
minimizing the square Euclidian norm:

7 =77, r=>b, - 4yx, (2-36)

with 2N+1 equations and 2N unknowns. The procedures used to minimize (2-36)

involve the reduction of the matrix 4;to various canonical forms via orthogonal
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transformations [4]. Here a QR factorization of A4, method was used, which consists of

seeking a (2N+1) by (2N+1) orthogonal matrix Q such that
R
4, = Q{ } (2-37)

where R is a 2N by 2N upper triangular matrix. The factorization was performed by
using a routine from the IMSL MATH/LIBRARY [6]. The solution obtained for Eq. (2-
35) was not accurate enough for the purpose of the present work. The residuals

(components of r=b, - A4,x,) were not very small compared to the components of the
right term b, .

The second approach used to solve for Green’s function is the following: for each

X,(j from 1 to N), the system (2-29) is solved by replacing the jth line with Eq. (2-33) for
the same j (expressing the uniqueness condition for that particularx,). The system (2-30)

is solved in a similar manner, but in conjunction with Eq. (2-34). Since the resulting
systems of equations are ill-conditioned, standard methods cannot be used for solving

them. The condition number is of the order 10° — 10%

Here a singular value
decomposition method (SVD) [4] is used for obtaining the solution. The SVD method for
solving a linear system ( Ax =b), with 4 a 2N by 2N real nonsingular matrix, is based

on the decomposition:
A=UzV" (2-38)

where U and V' are orthogonal matrices, and ¥ is a diagonal matrix. The elements on

the diagonal of X are called singular values of the matrix A:
0,20,2..20,,20 (2-39)

They can be used to get an estimation of the condition number, as a ratio of the largest to
the smallest of the o components.
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2.3. High-Order Cross Section Homogenization for Two-Group Nodal Diffusion

A two-group nodal diffusion code with a bilinear intra-nodal flux shape and
discontinuous flux across the node interface was developed in conjunction with the high-
order cross section homogenization method discussed in chapter 1. It allows the
correction of the cross sections and discontinuity factors up to an arbitrary order based on
precomputed data (forward and adjoint flux distributions, and the Green’s function, as
discussed in sections 2.1 and 2.2) for each unique assembly type, by using the current-to-
flux ratios at the node interface determined from the nodal calculation. An infinite
medium (zero net current boundary condition) is taken as the initial (unperturbed state) of
the assembly. The nodal discretization of the nodal equations is presented in Appendix
B.

The initial (zeroth order) nodal parameters are the standard GET homogenized
cross sections and discontinuity factors, determined from infinite medium single node
calculations. The standard discontinuity factor on each side of a nodal interface is
defined as the ratio of the heterogeneous flux (that is continuous at the interface) to the

homogeneous flux on each side of the interface. It is calculated as [1]:

—k
=t (2-40)
¢[m
where y“is the standard discontinuity factor for face k of the node, @, and @, are the

surface-averaged flux on face k and the node-averaged flux from infinite medium
calculations, respectively.
For the nodal calculations, the discontinuity factor in group g on face k of the

node can be written in terms of its infinite medium approximation xgk as [5]:

k k ¢Tg
_ P 2-41
fg Zg ¢gk ( )
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where ¢1 and Jgk represent the node-averaged flux in group g and the average flux on face

k in group g from the nodal calculations, respectively. The so-called heterogeneous

discontinuity factor xgk is calculated as:

2 — (=
k_ §[d X(Dg(x) ~ <(70,g>s +7g<(/_715g>s +}/§<¢2’g>s +“‘+7;<(7n,g>s +0(g)1+1)

P (2) ) () (B el
Vv

% (2-42)

where y,is the current-to-flux ratio in group g for interface k of the node. y, is
calculated as [5]:
Tk
k Jg

Ve = Tk (2-43)
A

where jgk is the average current for group g on face k, determined from the nodal

calculation.
The convergence criteria used for the iterative nodal cross sections updating, as
described in chapter I, are given below:
e The change in the average flux in each node (mesh) and for each group in two

consecutive cross sections updating iterations is less than 1%

02 (k) - g% (k= 1)
oy (k)

<1% i=1.N, g=12 (2-44)

e The change in the eigenvalue in two consecutive cross section updating iterations

is less than 107

[A(k)-Alk-1) <107 (2-45)
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The reconstructed fine-mesh flux is a byproduct of the method. For each node, it
is obtained by modulating the detailed flux distribution, which is obtained at each
updating of the cross section through the high-order perturbation formalism (see Egs. (2-

13)), with the nodal flux:

(2-46)

where ¢, (1) is the reconstructed flux for group g and mesh i in node n, and ¢, (1) is

the fine-mesh flux for group g and mesh i in node n obtained using the perturbation
formalism. The denominator of the ratio in Eq. (2-46) represents the integral of the nodal
flux over the node n, and the numerator is the integral of the fine-mesh flux, obtained
from the perturbation formalism, over the assembly corresponding to node n.

The reconstructed flux at different orders of the correction is compared to the
zeroth order (standard GET) reconstructed flux. The reconstruction of the zeroth order
flux here is performed by modulating the infinite-medium assembly flux with the nodal
flux obtained by using the standard (uncorrected) cross sections in the nodal calculations.

The form of the zeroth order reconstructed flux in a node is expressed as:
o, (x)=cp,(x)p,, (x).  i=LN (2-47)

where N is the number of nodes, 1 is the node index, ¢, is the zeroth order reconstructed
flux, ¢,is the nodal flux, ¢, is the infinite-medium flux, and c; is a constant. The

constant ¢; is determined by requiring the zeroth order reconstructed flux to be continuous

at the node interface:

@t (v hon, ()= cat (e i () = LN -1 (2-48)
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where X; i+ 1s the coordinate corresponding to the interface between nodes i and i+1. If ¢,
is fixed (c; =c), all the others constants ¢; (i=2,...N-1) are determined from (2-48). c is
determined by equating the core-integrated nodal flux with the core-integrated zeroth

order reconstructed flux.
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Chapter 111

Description of the Benchmark Configurations

The benchmark configurations (called 1 and 2) discussed in the last year report
for the one group case are also analyzed here for two-group [5]. Each configuration is a
core typical of a BWR in slab geometry, with a total length of 106.68 cm, consisting of
seven assemblies of three types. The layouts for these two configurations and for the
component assemblies are shown in Figure 3-1.

The three types of assemblies have the same geometry, but a different fuel
composition. Each assembly consists of four fuel regions each 3.231cm thick surrounded
by water. The water gap is 1.158 cm thick, and the assembly length is 15.24 cm. The
two-group cross sections [5] for each material are shown in Table 3-1, and the infinite
medium multiplication constant for each assembly type is given in Table 3-2. Assembly
3, which is the least reactive one (k. = 0.6677), has two fuel regions that contain
gadolinium.

The fine-mesh flux distributions of the two configurations, for a zero net current
boundary condition, are presented in Figure 3-2 and Figure 3-3 (for configuration 1 and
configuration 2, respectively) to highlight the flux gradient across the core and the shape
of the flux that needs to be approximated. Configuration 1 is a simple core with small
gradients of the flux at the assemblies’ interface. Core 2 is a more restrictive
configuration, with large flux gradients at the interfaces and a significant change of the

flux across the core.
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Assembly 1 Assembly 2 Assembly 3

Water Fuel 1 Fuel 11 Fuel 111
(with Gd)

Configuration 1

Configuration 2

Figure 3-1. Assemblies and Configurations Layouts for Cores 1 and 2
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Table 3-1. Material Properties for Assemblies in Configurations 1 and 2

Cross Section” Water Fuel I Fuel 11 Fuel IIT
(with Gd)

D, 1.7639 1.4730 1.4804 1.5432
Gal 0.0003 0.0096 0.0101 0.0135
Yot 0 0.0067 0.0078 0.0056
Gs12 0.0380 0.0161 0.0156 0.0136
D, 0.2278 0.3294 0.3362 0.3143
Ca2 0.0097 0.0764 0.0901 0.4873
Yo 0 0.1241 0.1542 0.0187
Gl 0 0 0 0

* The diffusion coefficients are in cm, and the cross sections in cm’

Assembly Type Ko
1 1.33267
2 1.30188
3 0.66768

Calculated with 6 meshes/each material region
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Figure 3-3. Flux Distribution in Configuration 2
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3.1. Development of New Benchmark Configurations

Three new more realistic benchmark configurations typical of a BWR in slab
geometry were developed. Each core configuration has 16 fuel assemblies, and a total
length of 243.84 cm. There are six different assembly types. Each assembly, of the GE-9
bundle design, consists of eight fuel regions with water gaps at each side. The assembly
and core layouts are shown in Figures 3-4 and 3-5, respectively. The assembly types are
labeled from 1 to 6, and the core types are labeled A, B, and C. The cross sections for
each assembly type are given in Tables 3-3 to 3-8, and the infinite-medium multiplication
constant is given in Table 3-9. The fine-mesh flux distributions from in core
configurations A, B and C are shown in Figures 3-6, 3-7 and 3-8, respectively. Because
of the symmetry, only the distribution for the left half of the configuration is shown. It
can be observed that core C is the most heterogeneous one, with large variations of the
flux across the core.

The two-group cross sections for the one-dimensional assemblies in Figure 3-4
were generated from the infinite-medium solution of a fine-mesh two-dimensional model
of the 8 x 8 GE-9 fuel assembly [3] with eight burnable gadolinium absorber rods. The
infinite-medium solution was computed using the collision-probability code HELIOS [2]
version 1.6 [7] with a 45-group neutron cross section library. A plot of the HELIOS
computational mesh is shown in Figure 3-9. Note that only half of the assembly was
modeled due to the diagonal symmetry of the system. The fuel was depleted to a burnup
of 50,000 MWd/tU through 52 time steps. Six burnup levels were selected for use in the
1-D slab problem: fresh fuel with equilibrium Xenon and Samarium concentrations;
12,000; 27,500; 30,000; 35,000; and 50,000 MWd/tU. The fine-group cross sections for
these assembly states were then homogenized in ten regions and collapsed to the classic
two-group structure (0.625 eV fast/thermal boundary). The regions correspond to
vertical slices of the assembly. With the assembly oriented with the wide gap on the left
(as in Figure 3-9), the first region includes everything to the left of the first column of pin
cells. The next eight regions correspond to the eight columns of pin cells. Note that the
central two columns do not have straight vertical boundaries in the HELIOS model.

Consequently, the average width of each of these two regions was used in the 1-D slab
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model. The tenth and final region corresponds to everything to right of the last column of
pin cells. Finally, assemblies were arranged in the 1-D core so that the wide and narrow

gaps of neighboring assemblies were adjacent, as in actual BWR cores.
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Core A

Core C

Figure 3-5. Layouts for Configurations A, B and C

Table 3-3. K. for Assemblies in Cores A,Band C

Assembly Burnup Ko
MWd/tU)
1 30,000 0.99787
2 27,500 1.02104
3 35,000 0.95309
4 0 + Xe/Sm 1.05206
5 50,000 0.83781
6 12,000 1.16238

Fine-mesh calculations with 6 meshes per material region
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Table 3-4. Cross Section” Data for Assembly 1

Material # D, Vo Cal o1 D, o Cu2
1 .123606E+01 .000000E+00 .502126E-03 .294667E-01 .275967E+00 .000000E+00 .824310E-02
2 A32711E+01 .357186E-02 912890E-02 .134793E-01 418860E+00 .673313E-01 .575315E-01
3 .134518E+01 418529E-02 .871413E-02 .122726E-01 414601E+00 .845764E-01 .659061E-01
4 .134056E+01 .450485E-02 .904711E-02 .116912E-01 414376E+00 .959859E-01 J721948E-01
5 .133044E+01 .339868E-02 .686882E-02 .149655E-01 .363271E+00 .683769E-01 .534524E-01
6 .133026E+01 .348024E-02 .677523E-02 .152843E-01 .363114E+00 .701716E-01 .539338E-01
7 .133903E+01 477865E-02 911480E-02 111977E-01 413490E+00 .104183E+00 .760959E-01
8 .134394E+01 467405E-02 .894015E-02 .113039E-01 412236E+00 .994829E-01 .733380E-01
9 .132979E+01 436352E-02 .927441E-02 .120595E-01 413988E+00 .908413E-01 .692121E-01
10 .128959E+01 .000000E+00 .594152E-03 .230344E-01 .315804E+00 .000000E+00 .739186E-02

* . . . . . . - .
Diffusion coefficients are in cm and cross sections are in cm™ ; no upscattering.

™ From left to right of the assembly
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Table 3-5. Cross Section Data for Assembly 2

Material # D, o] Gal o2 D, VO Ca2
1 .129066E+01 .000000E+00 .593008E-03 .229587E-01 .316129E+00 .000000E+00 .738181E-02
2 .133083E+01 .448700E-02 .921768E-02 .120335E-01 413772E+00 .937679E-01 .700652E-01
3 .134491E+01 .480552E-02 .889558E-02 .112858E-01 412123E+00 .102478E+00 T41872E-01
4 .133999E+01 491485E-02 .906971E-02 111782E-01 413368E+00 .107359E+00 .770120E-01
5 .133130E+01 .358057E-02 .674298E-02 .152424E-01 .363115E+00 .723637E-01 .545548E-01
6 .133157E+01 .350162E-02 .683371E-02 .149244E-01 .363234E+00 .706760E-01 .541394E-01
7 .134169E+01 .464404E-02 .900012E-02 .116669E-01 414063E+00 .994246E-01 .732746E-01
8 .134633E+01 A431137E-02 .866630E-02 .122512E-01 414260E+00 .877441E-01 .669033E-01
9 .132837E+01 .365292E-02 .904741E-02 .134504E-01 418656E+00 .695389E-01 .581468E-01
10 .123725E+01 .000000E+00 .501013E-03 .293568E-01 .276130E+00 .000000E+00 .823674E-02

* . . . . . . - .
Diffusion coefficients are in cm and cross sections are in cm™ ; no upscattering.

" From left to right of the assembly
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Table 3-6. Cross Section” Data for Assembly 3

Material #

D, Vo Gal o12 D, vonR Ca2
1 .123391E+01 .000000E+00 .504241E-03 .296708E-01 .275660E+00 .000000E+00 .825518E-02
2 .132492E+01 .343357E-02 .929063E-02 .135307E-01 419244E+00 .634313E-01 .564453E-01
3 .134308E+01 395448E-02 .880972E-02 123112E-01 415354E+00 785511E-01 .639516E-01
4 .133846E+01 424347E-02 .914015E-02 .117385E-01 415143E+00 .892341E-01 .699840E-01
5 .132830E+01 .320441E-02 .693837E-02 .150491E-01 .363420E+00 .638225E-01 .520241E-01
6 .132827E+01 .328983E-02 .683864E-02 .153671E-01 .363197E+00 .657869E-01 .526174E-01
7 .133723E+01 451778E-02 920275E-02 112397E-01 413921E+00 977767E-01 J41315E-01
8 .134214E+01 .442286E-02 .902725E-02 .113430E-01 412638E+00 .934750E-01 .715297E-01
9 .132786E+01 .413453E-02 .938686E-02 121126E-01 414507E+00 .851878E-01 .674935E-01
10 .128756E+01 .000000E+00 .596386E-03 231822E-01 .315162E+00 .000000E+00 741177E-02

* . . . . . . - .
Diffusion coefficients are in cm and cross sections are in cm™ ; no upscattering.

" From left to right of the assembly
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Table 3-7. Cross Section” Data for Assembly 4

Material # D, Vo Cal o1 D, o Cu2
1 .128965E+01 .000000E+00 .589990E-03 .232679E-01 .319333E+00 .000000E+00 .728288E-02
2 .133315E+01 .624849E-02 .841321E-02 .125178E-01 419496E+00 .108700E+00 .660741E-01
3 .133930E+01 .633130E-02 .887330E-02 .119167E-01 400060E+00 .972496E-01 .963494E-01
4 .133295E+01 .646164E-02 .905883E-02 .117938E-01 .399344E+00 .991401E-01 .101514E+00
5 .132750E+01 487744E-02 .631206E-02 .157675E-01 .371781E+00 .805383E-01 .504019E-01
6 .132481E+01 .470393E-02 .696659E-02 .154214E-01 .353952E+00 .653003E-01 .818175E-01
7 .133896E+01 .631830E-02 .893711E-02 .123118E-01 .397431E+00 .978842E-01 .101481E+00
8 .135244E+01 .614404E-02 795681E-02 .127463E-01 419030E+00 .107776E+00 .657387E-01
9 .133924E+01 S17189E-02 784389E-02 137731E-01 423202E+00 .870540E-01 .562101E-01
10 .124152E+01 .000000E+00 .494303E-03 .291780E-01 .277557E+00 .000000E+00 .818209E-02

* . . . . . . - .
Diffusion coefficients are in cm and cross sections are in cm™ ; no upscattering.

™ From left to right of the assembly
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Table 3-8. Cross Section” Data for Assembly 5

Material # D, Vo1 Gal o12 D, VO Ca2

1 .122965E+01 .000000E+00 .509310E-03 .300991E-01 .274934E+00 .000000E+00 .828368E-02
2 .132110E+01 .318544E-02 .974767E-02 .136133E-01 419990E+00 .558469E-01 .545154E-01
3 .133902E+01 .345481E-02 .909815E-02 .123717E-01 417492E+00 .645840E-01 .593034E-01
4 .133386E+01 .363393E-02 .942208E-02 .118380E-01 417709E+00 .722484E-01 .641240E-01
5 .132318E+01 .274190E-02 U715081E-02 .152664E-01 .364127E+00 .520350E-01 .480830E-01
6 .132341E+01 282721E-02 .703014E-02 .155714E-01 .363790E+00 .541166E-01 488156E-01
7 .133293E+01 .386514E-02 .946561E-02 .113599E-01 416041E+00 .802240E-01 .682536E-01
8 .133796E+01 .379774E-02 .928761E-02 .114561E-01 414607E+00 J71718E-01 .661796E-01
9 .132366E+01 .361035E-02 .972077E-02 .122524E-01 416248E+00 T712566E-01 .630325E-01
10 128269E+01 .000000E+00 .602301E-03 .235516E-01 .313506E+00 .000000E+00 T46432E-02

. . B . B . I .
Diffusion coefficients are in cm and cross sections are in cm™ ; no upscattering.

™ From left to right of the assembly
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Table 3-9. Cross Section” Data for Assembly 6

Material # D, o] Gal o2 D, VO Ca2
1 .129676E+01 .000000E+00 .586354E-03 .225763E-01 .318163E+00 .000000E+00 .732088E-02
2 .133757E+01 .537239E-02 .880688E-02 .119636E-01 414007E+00 .110721E+00 .737301E-01
3 .135063E+01 .568988E-02 .857664E-02 112871E-01 412227E+00 .116708E+00 .794471E-01
4 .134570E+01 .582692E-02 .873877E-02 111657E-01 413776E+00 .122522E+00 .820451E-01
5 .133753E+01 426455E-02 .649957E-02 .150814E-01 .364382E+00 .839712E-01 .567871E-01
6 .133846E+01 420883E-02 .657689E-02 .147676E-01 .363679E+00 .826763E-01 .578628E-01
7 .134912E+01 .560637E-02 .864986E-02 .115892E-01 413849E+00 .118378E+00 .785372E-01
8 .135434E+01 .522557E-02 .832292E-02 .121641E-01 413774E+00 .106964E+00 T18649E-01
9 .133755E+01 .433802E-02 .848741E-02 .132915E-01 418015E+00 .853734E-01 .619111E-01
10 .124513E+01 .000000E+00 .493887E-03 .286684E-01 277157E+00 .000000E+00 .819725E-02

* . . . . . . - .
Diffusion coefficients are in cm and cross sections are in cm™ ; no upscattering.

" From left to right of the assembly
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Chapter IV

Results

4.1. The Convergence of the Expansion Series in the Multigroup Case

The convergence of the expansion series (see Egs. 1-5, 1-6, 1-11) in the
multigroup case is tested using as a benchmark configuration an assembly typical of a
BWR in slab geometry (see Figure 3-1).

A two-group fine-mesh diffusion code was developed to precompute the data
(forward and ajoint fluxes, and Green’s function) required for calculating the expansion
coefficients. The fine-mesh calculations are performed with six meshes per each material
region, leading to a total of thirty-six meshes per assembly. An infinite-medium (net zero
current) boundary condition is used as the initial state of the assembly. Then different
perturbations of the boundary condition (current-to-flux ratio) are considered: those
subjected to when the assembly is located in core configurations 1 and 2 as shown in
Figure 3-1.

These current-to-flux ratios are determined for each assembly by performing
fine-mesh diffusion calculations for the full core (configuration 2). For each
perturbation, the expansion coefficients for the flux and the eigenvalue are calculated,
and the corrected values are compared to the “exact” values. The “exact” value here
means the flux and eigenvalue obtained from fine-mesh assembly calculation, using for
the boundary condition the corresponding current-to-flux ratio obtained from the fine-

mesh core calculations.

4.1.1. Results for Assembly #1

The flux and eigenvalue results for assembly 1 (see Figure 3-1) are shown in

Table 4-1 for different magnitudes of the perturbation, corresponding to four different
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positions of the assembly in configurations 1 and 2. The first two cases correspond to
assembly 1 in the first and the third position from left to right in configuration 1, and the
other two cases correspond to the same positions in configuration 2. The results
corresponding to the assembly in the seventh and fifth position from left to right in the
same configuration are not shown in the table, but they are similar. The similarity of the
results corresponding to symmetric positions of the assembly (e.g. first with seventh,
third with fifth) in a configuration constituted one of the tests for assessing the
correctness of the numerical implementation. Another test consisted of verifying if the
integral over the phase-space of any high-order coefficient in the flux expansion is zero,

as it should be according to the theoretical model (see Eq. 2-6). In one case for example
(see case 1 in Table 3-3), with ‘(phg (1)‘ >10"*,i=1,.N ,g=12, where i is a mesh index

and g is a group index, a value of the order 10™® was obtained for the integral of the first-
order flux.
The comparison of the reference and the calculated flux distributions is made by

means of the flux RMS, which is defined as:

)2

N P .
RMS _ 100 Nl 1 Z(¢rc{ference,z ¢calculated i J (4_1)

i=1 ¢r¢ference S

where N is the total number of meshes.

The method produces very good results. The flux RMS is less than 0.1% and
the corrected eigenvalue is within 0.6% of the reference value for all four cases. For
small perturbations (cases 1 and 2) an expansion up to the second order is sufficient to
obtain a very good agreement, whereas for larger perturbations (cases 3 and 4) four or
five orders need to be considered. To illustrate the change in the flux distribution with
the order of the perturbation, the flux distribution for case 3 is shown in Figure 4-1 up to
the fourth order. It can be seen that there is a large shape difference between the infinite
medium flux and the exact (reference) flux, especially for the fast group; the corrected

solutions oscillate around the reference, until at the fourth-order most of the difference is
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accounted for by the perturbation method. For the other three cases the flux distributions
are shown in Figures 4-2 to 4-4.

The high-order corrected assembly-homogenized cross sections and
discontinuity factors, for the same sets of perturbations as considered in Table 4-1, are
presented in Table 4-2 for the fast group, and in Table 4-4 for the thermal group. For
small perturbations, one or two terms in the expansion of the homogenized cross sections
are sufficient to reproduce the reference values, whereas for larger perturbations five
terms are needed to obtain a similar agreement.

The agreement is also very good for the discontinuity factors, even though the
magnitude of the initial perturbation is larger compared to that for the cross sections (e.g.,
the error for the heterogeneous discontinuity factor on the right boundary is -34% in case
3 and -20% in case 4). The second order correction of the discontinuity factors
reproduce the reference values in cases 1 and 2. In cases 3 and 4, the corrected values at
the fifth order are within 0.15% of the reference results.

It needs to be mentioned that the two configurations in which assembly 1 is
considered are quite different. Core 1 (corresponding to cases 1 and 2) is a very simple
configuration, with small gradients of the flux at the node interface. Core 2 is a more
restrictive configuration, with large flux gradients at the interfaces and a significant
change of the flux across the core. The other type of assembly (type 3) in core 2 has

gadolinium in two of its four fuel regions.

44



Table 4-1. Flux and Eigenvalue Results for Assembly #1"

) (J/D)yege (J/D)signe Reference | Ord. | Calculated | Error® | Fast | Thermal
** fast/ fast/ Eigenvalue of Eigenvalue Flux Flux
% thermal thermal Aret Pert. Acale RMS RMS
) (%) (%)
0 0.75037 -0.96 0.71 0.53
1|0 0.4556E-02 0.75766 1 0.75764 0.00 0.01 0.01
0. -0.3652E-03 2 0.75754 -0.02 0.01 0.01
3 0.75754 -0.02 0.01 0.01
0 0.75037 -1.00 0.31 0.24
2 | -0.1988E-02 | 0.3129E-02 0.75794 1 0.75762 -0.04 0.00 0.00
0.5822E-03 | -0.4851E-03 2 0.75756 -0.05 0.00 0.00
3 0.75756 -0.05 0.00 0.00
0 0.75037 -15.85 15.75 18.75
3] 0. 0.1026 0.89167 1 0.94218 5.66 4.03 5.31
0. 0.1178E-01 2 0.88328 -0.94 0.60 0.98
3 0.89731 0.63 0.11 0.21
4 0.89515 0.39 0.13 0.12
5 0.89512 0.39 0.07 0.08
0 0.75037 -15.85 8.97 11.01
4 | -0.1382E-01 | 0.7057E-01 0.89170 1 0.91549 2.67 1.72 2.42
-0.5439E-02 | 0.9505E-02 2 0.89365 0.22 0.17 0.33
3 0.89714 0.61 0.06 0.10
4 0.89670 0.56 0.05 0.05
5 0.89672 0.56 0.05 0.05

*As shown in Figure 3-1

?Cases 1 and 2 refer to two different positions in configuration 1, cases 3 and 4 refer to two different
positions in configuration 2

® Calculated as 100*(heyie Are)/ Arer
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Fast Flux (arbitrary units)

Thermal Flux (arbitrary units)
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Figure 4-1. Flux Distribution in Case 3
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Table 4-2. Fast Group Cross Sections” for Assembly #1

x Order
ﬁ of D VOt Or C12 7(1eftf Lright
5 Pert. (err)° (err) (err) (err) (err) (err)
reference 1.5182 6.2100E-3 8.4738E-3 1.9046E-2 0.9548 0.9362
1? 0 1.5184 6.2063E-3 8.4793E-3 1.9056E-2 0.9490 0.9490
(-0.01) (0.06) (0.05) (-0.05) (0.61) (-1.37)
1 1.5182 6.2100E-3 8.4738E-3 1.9046E-2 0.9549 0.9360
(0.00) (0.00) (0.00) (0.00) (-0.01) (0.02)
2 1.5182 6.2100E-3 8.4738E-3 1.9046E-2 0.9548 0.9362
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
reference 1.5182 6.2104E-3 8.4743E-3 1.9045E-2 0.9476 0.9476
2° 0 1.5184 6.2063E-3 8.4793E-3 1.9056E-2 0.9490 0.9490
(-0.01) (0.07) (0.06) (-0.06) (-0.15) | (-0.67)
1 1.5182 6.2004E-3 8.4743E-3 1.9045E-2 0.9476 0.9426
(0.00) (0. 00) (0. 00) (0. 00) (0. 00) (0.01)
reference 1.5162 6.2713E-3 8.5476E-3 1.8880E-2 1.0769 0.7083
0 1.5184 6.2063E-3 8.4793E-3 1.9056E-2 0.9490 0.9490
(-0.14) (1.04) (0.92) (-0.93) (11.14) | (-33.97)
1 1.5155 6.2929E-3 8.5737E-3 1.8821E-2 1.0942 0.6430
(0.05) (-0.34) (-0.31) (0.31) (-2.46) (9.22)
3¢ 2 1.5164 6.2660E-3 8.5411E-3 1.8895E-2 1.0658 0.7197
(-0.01) (0.08) (0.08) (-0.08) (0.20) (-1.61)
3 1.5161 6.2726E-3 8.5492E-3 1.8876E-2 1.0681 0.7060
(0.00) (-0.02) (-0.02) (0.02) (-0.01) (0.33)
4 1.5162 6.2715E-3 8.5478E-3 1.8880E-2 1.0691 0.7067
(0.00) (0.00) (0.00) (0.00) (-0.11) (0.22)
5 1.5162 6.2715E-3 8.5478E-3 1.8880E-2 1.0691 0.7067
(0.00) (0.00) (0.00) (0.00) (-0.06) (0.15)
reference 1.5163 6.2693E-3 8.5451E-3 1.8886E-2 0.9915 0.7890
0 1.5184 6.2063E-3 8.4793E-3 1.9056E-2 0.9490 0.9490
(-0.14) (1.00) (0.89) (-0.90) (4.29) | (-20.28)
1 1.5159 6.2782E-3 8.5559E-3 1.8861E-2 1.0052 0.7597
(0.02) (-0.14) (-0.13) (0.13) (-1.39) (3.71)
4¢ 2 1.5163 6.2680E-3 8.5434E-3 1.8889E-2 0.9903 0.7924
(0.00) (0.02) (0.02) (-0.02) (0.12) (-0.43)
3 1.5162 6.2697E-3 8.5456E-3 1.8885E-2 0.9919 0.7878
(0.00) (-0.01) (-0.01) (0.01) (-0.04) (0.14)
4 1.5162 6.2695E-3 8.5453E-3 1.8885E-2 0.9919 0.7882
(0.00) (0.00) (0.00) (0.00) (-0.04) (0.10)

* The diffusion coefficient is in cm, and the cross sections are in cm’™

" Cases 1 and 2 - two different positions in config. 1; cases 3 and 4 - two different positions in config. 2

* (V/§)rer=0; (J/))righ= 0.4556E-02

® (J/¢)1er=-0.1988E-02 ; (J/)yign= 0.3129E-02
¢ (J/d))left:O; (J/¢)right: 01026
¢ (1/§)1e=-0.1382E-01 ; (J/)ign= 0.7057E-01

¢ Calculated as 100*(reference-calculated)/reference
" Heterogeneous discontinuity factor calculated as the ratio of the surface flux to the assembly average flux
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Table 4-3. Thermal Group Cross Sections” for Assembly #1

¥ Order
I+ f
° of D VOt Cr Yeft Lright
@ Pert. (err)* (err) (err) (err) (err)
o
reference 3.0591E-1 1.0198E-1 6.3763E-2 1.7649 1.7431
1? 0 3.0589E-1 1.0196E-1 6.3752E-2 1.7545 1.7545
(0.00) (0.02) (0.02) (0.59) (-0.65)
1 3.0591E-1 1.0198E-1 6.3763E-2 1.7650 1.7430
(0.00) (0.00) (0.00) (-0.01) (0.01)
2 3.0591E-1 1.0198E-1 6.3763E-2 1.7649 1.7431
(0.00) (0.00) (0.00) (0.00) (0.00)
reference 3.0587E-1 1.0193E-1 6.3739E-2 1.7617 1.7524
2° 0 3.0589E-1 1.0196E-1 6.3752E-2 1.7545 1.7545
(-0.01) (-0.02) (-0.02) (0.41) (-0.12)
1 3.0587E-1 1.0193E-1 6.3739E-2 1.7617 1.7524
(0.00) (0.00) (0.00) (0.00) (0.00)
reference 3.0695E-1 1.0351E-1 6.4558E-2 2.0371 1.3086
0 3.0589E-1 1.0196E-1 6.3752E-2 1.7545 1.7545
(0.35) (1.50) (1.25) (13.87) (-34.08)
1 3.0728E-1 1.0399E-1 6.4808E-2 2.1134 1.1720
(-0.01) (-0.47) (-0.39) (-3.75) (10.44)
3¢ 2 3.0688E-1 1.0341E-1 6.4507E-2 2.0259 1.3352
(0.02) (0.10) (0.08) (0.55) (-2.03)
3 3.0696E-1 1.0353E-1 6.4568E-2 2.0392 1.3027
(0.00) (-0.02) (-0.01) (-0.10) (0.45)
4 3.0696E-1 1.0352E-1 6.4562E-2 2.0393 1.3061
(0.00) (-0.01) (-0.01) (-0.11) (0.19)
5 3.0696E-1 1.0352E-1 6.4560E-2 2.0384 1.3061
(0.00) (0.00) (0.00) (-0.07) (0.15)
reference 3.0719E-1 1.0385E-1 6.4736E-2 1.8335 1.4682
0 3.0589E-1 1.0196E-1 6.3752E-2 1.7545 1.7545
(0.42) (1.83) (1.52) (4.31) (-19.50)
1 3.0731E-1 1.0403E-1 6.4828E-2 1.8712 1.4010
(-0.04) (-0.17) (-0.14) (-2.05) (4.58)
4¢ 2 3.0718E-1 1.0384E-1 6.4727E-2 1.8280 1.4779
(0.00) (0.02) (0.01) (0.30) (-0.66)
3 3.0720E-1 1.0386E-1 6.4740E-2 1.8349 1.4655
(0.00) (-0.01) (-0.01) (-0.07) (0.18)
4 3.0720E-1 1.0386E-1 6.4739E-2 1.8343 1.4669
(0.00) (-0.01) (0.00) (-0. 04) (0.09)

* The diffusion coefficient is in cm, and the cross sections are in cm’™
" Cases 1 and 2 - two different positions in config. 1; cases 3 and 4 - two different positions in config. 2
a (J/(I))lef[: O, (J/d))right: -03652E-3
® (J/d)ier= 0.5822E-03 ; (J/d)sign= -0.4851E-03
¢ (J/d)er= 05 (J/§)rign= 0.1178E-01

¢ (I/9)ei=-0.5439E-02 ; (J/)sigh= 0.9505E-02
¢ Calculated as 100*(reference-calculated)/reference
' Heterogeneous discontinuity factor calculated as the ratio of the surface flux to the assembly average flux
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Figure 4-2. Flux Distribution in Case 1

49



Thermal Flux (arbitrary units)
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Figure 4-4. Flux Distribution in Case 4
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4.1.2. Results for Assembly #3

The flux and eigenvalue results for assembly 3 (see Figure 3-1) are shown in
Table 4-4, for two values of the perturbation of the boundary condition, corresponding to
the following position of the assembly in configuration 2: second from left to right, and at
the center. The magnitude of the perturbation is quite large, compared to the perturbation
of the boundary condition for assembly 1 in the same configuration. In case 5 for
example, the initial eigenvalue is 68% off from the reference value, whereas the initial
flux RMS error is 21% for the fast flux and 23% for the thermal flux. A plot of the flux
distribution for this last case is shown in Figure 4-5. This figure gives a good indication
of how large the perturbations are and that the method improves the results substantially.
Flux distribution for case 6 is shown in Figure 4-6.

The high-order homogenized cross sections and discontinuity factors
corresponding to assembly 3 are shown in Table 4-5 and 4-6 for the fast group and for the
thermal group, respectively. The corrected values agree very well with the reference
results. If the initial perturbation is larger, as it is the case for the discontinuity factors,
higher orders corrections are needed to obtain a very good agreement. For example, five
orders are required to reduce an initial error of —32% in the thermal discontinuity factor

on the right boundary down to 0.05%.
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Table 4-4. Flux and Eigenvalue Results for Assembly #3"

. (J/D))esc (J/D)yight Reference Ord. | Calculated | Error® | Fast | Thermal
T+ fast/ fast/ Eigenvalue of Eigenvalue Flux Flux
% thermal thermal Aret Pert. Acale RMS RMS
) (%) (%)
0 1.49772 6797 | 21.24 22.68
5 10.1026 -0.1382E-1 0.89168 1 1.03008 15.52 3.15 4.54
0.1178E-01 -0.5439E-2 2 0.93150 447 0.51 0.42
3 0.91292 2.38 0.37 0.35
4 0.91289 2.38 0.11 0.11
5 0.91421 2.53 0.05 0.05
0 1.49772 67.96 5.00 8.21
6 | 0.7057E-1 -0.7057E-1 0.89170 1 0.93438 4.79 0.31 0.85
0.9505E-2 -0.9505E-2 2 0.91297 2.39 0.03 0.11
3 0.91365 2.46 0.02 0.04
4 0.91385 248 0.02 0.03
5 0.91386 249 0.02 0.03

* As shown in Figure 3-1
*Cases | and 2 refer to two different positions in configuration 2

® Calculated as 100* (Aeaie ~Aret) Aret
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Figure 4-5. Flux Distribution in Case 5
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Table 4-5. Fast Group Cross Sections” for Assembly #3

% Order
ﬁ of D 4 VO Oy O12 )(,lefte A right
5 Pert. (err) (err) (err) (err) (err) (err)
reference 1.54594 5.14140E-3 9.56391E-3 1.88051E-2 1.43396 0.81358
0 1.54312 5.21060E-3 9.73547E-3 1.84941E-2 1.01945 0.8136
(0.18) (-1.35) (-1.79) (1.65) (28.91) | (-25.30)
1 1.54526 5.15810E-3 9.60378E-3 1.87318E-2 1.35486 0.84464
(0.04) (-0.32) (-0.42) (0.39) (552) | (-3.82)
5% 2 1.54580 5.14489E-3 9.57187E-3 1.87902E-2 1.43080 0.80743
(0.01) (-0.07) (-0.08) (0.08) (0.22) (0.76)
3 1.54592 5.14189E-3 9.56487E-3 1.88032E-2 1.43750 0.80901
(0.00) (-0.01) (-0.01) (0.01) (-0.25) | (0.56)
4 1.54593 5.14160E-3 9.56431E-3 1.88043E-2 1.43484 0.81219
(0.00) (0.00) (0.00) (0.00) (-0.06) | (0.17)
5 1.54593 5.14169E-3 9.56457E-3 1.88038E-2 1.43373 0.81293
(0.00) (-0.01) (-0.01) (0.01) (0.02) (0.08)
reference 1.54594 5.14140E-3 9.56392E-3 1.88051E-2 1.12377 1.12377
0 1.54312 5.21060E-3 9.73547E-3 1.84941E-2 1.01945 0.8136
(0.18) (-1.35) (-1.79) (1.65) (9.28) (9.28)
1 1.54571 5.14706E-3 9.57627E-3 1.87815E-2 1.11683 1.11683
(0.02) (-0.11) (-0.13) (0.13) (0.62) (0.62)
6° 2 1.54591 5.14202E-3 9.56517E-3 1.88026E-2 1.12314 1.12314
(0.00) (-0.01) (-0.01) (0.01) (0.06) (0.06)
3 1.54593 5.14167E-3 9.56450E-3 1.88040E-2 1.12340 1.12340
(0.00) (-0.01) (-0.01) (0.01) (0.03) (0.03)

* The diffusion coefficient is in cm, and the cross sections are in cm’'

" Cases 5 and 6 refer to two different positions in configuration 2

® (J/O)er= 0.1026;  (J/§)rign= -0.1382E-1

® (J/§)es= 0.7057E-1; (J/®)sign= -0.7057E-1

4 Calculated as 100*(reference-calculated)/reference

¢ Heterogeneous discontinuity factor calculated as the ratio of the surface flux to the assembly average flux
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Table 4-6. Thermal Group Cross Sections” for Assembly #3

% Order
ﬁ of D d VOt Gy Xlefte Xright
5 Pert. (err) (err) (err) (err) (err)
reference 2.89695E-1 6.77120E-2 8.85175E-2 3.45807 1.93438
0 2.91040E-1 6.86045E-2 9.30339E-2 2.55019 2.55019
(-0.46) (-1.32) (-5.10) (26.25) (-31.84)
1 2.89897E-1 6.78493E-2 8.91802E-2 3.26539 2.06684
(-0.07) (-0.20) (-0.75) (5.57) (-6.85)
5% 2 2.89725E-1 6.77346E-2 8.86076E-2 3.44447 1.93466
(-0.01) (-0.03) (-0.10) (0.39) (-0.01)
3 2.89698E-1 6.77143E-2 8.85184E-2 3.46451 1.92541
(0.00) (0.00) (0.00) (-0.19) (0.46)
4 2.89697E-1 6.77144E-2 8.85262E-2 3.46011 1.93128
(0.00) (0.00) (-0.01) (-0.06) (0.16)
5 2.89701E-1 6.77159E-2 8.85354E-2 3.45788 1.93337
(0.00) (-0.01) (-0.02) (0.01) (0.05)
reference 2.89695E-1 6.77122E-2 8.85182E-2 2.69620 2.69620
0 2.91040E-1 6.86045E-2 9.30339E-2 2.55019 2.55019
(-0.46) (-1.32) (-5.10) (5.42) (5.42)
1 2.89732E-1 6.77486E-2 8.85844E-2 2.68075 2.68075
(-0.01) (-0.05) (-0.07) (0.57) (0.57)
6° 2 2.89699E-1 6.77158E-2 8.85264E-2 2.69425 2.69425
(0.00) (-0.01) (-0.01) (0.07) (0.07)
3 2.89700E-1 6.77157E-2 8.85334E-2 2.69551 2.69551
(0.00) (-0.01) (-0.02) (0.03) (0.03)

* The diffusion coefficient is in cm, and the cross sections are in cm’"
" Cases 5 and 6 refer to two different positions in configuration 2

* (J/0)er= 0.1178E-1; (J/)sign= -0.5439E-2

® (J/§)er= 0.9505E-2; (J/®)sign= -0.9505E-2

4 Calculated as 100*(reference-calculated)/reference
¢ Heterogeneous discontinuity factor calculated as the ratio of the surface flux to the assembly average flux
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Figure 4-6. Flux Distribution in Case 6
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4.2. High-Order Cross Section Homogenization for Two-Group Nodal Diffusion

4.2.1. Results for Configurations 1 and 2

Configuration 1 is a very simple configuration, with small gradients of the flux at
the node interface (see Figure 3-2). For this configuration, the use of the standard GET
nodal parameters leads to a good agreement of the nodal calculations with the fine-mesh
core calculations. That is, there is no need to correct the nodal parameters in this case.
Therefore, only results for configurations 2 are shown in this section.

The distribution of the nodal flux at different orders of corrections for the nodal
parameters is compared to the reference distribution in Figures 4-7 and 4-8 for the fast
flux and for the thermal flux, respectively. The full core fine-mesh calculation is taken as
the reference. The node-integrated flux, as well as the assembly reconstructed fine-mesh
flux is compared to the assembly reference flux, for different orders of the correction of
the nodal cross sections, in Tables 4-7 and 4-8 for the fast and thermal flux, respectively.
Only results for nodes 1 through 4 are shown, given the symmetry.

It can be seen from the above tables that the zeroth order node-integrated fast flux
overestimates the reference value in those nodes where assembly 1 is positioned (3.2%
and 2.3%), but underestimates the reference value in the nodes where assembly 3 is
present (-7.1% and —7.7%). The errors corresponding to the zeroth order thermal flux in
each node (up to 14% in absolute value) are about twice as large as the fast flux errors.
The difference is reduced to less than 1% at the third order, for both groups, and becomes
less than 0.5% at the fourth order.

The error of the assembly reconstructed flux, at a high order of the correction, has
the same order of magnitude as that of the node-integrated flux in the corresponding
node. The first and second order corrected reconstructed fine-mesh flux is compared to
the reference fine-mesh flux distribution in Figure 4-9 for group 1 and in Figure 4-10 for
group 2. It can be seen that even the reconstructed flux shape corresponding to the

second order approximates the shape of the reference flux in both groups very well. At
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the fourth order, not shown in the figures, the corrected and the reference flux shapes are
practically identical.

The distribution of the zeroth order reconstructed flux is shown in Figure 4-11
for the fast flux and in Figure 4-12 for the thermal flux. The difference between the
distributions is more pronounced in the center of the core for both the thermal and the fast

fluxes.
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Table 4-7. Assembly Fast Flux in Core 2

Order of Assembly Reference Nodal Error® Reconstructed Error®
Perturbation Position
1 1.3614 1.4051 3.20 1.3901 2.10
0 2 0.6650 0.6176 -7.14 0.6536 -1.72
3 0.5465 0.5593 2.33 0.5456 -0.17
4 0.3807 0.3514 -7.70 0.3366 -11.60
1 1.3614 1.4376 5.59 1.4404 5.80
1 2 0.6650 0.6404 -3.69 0.6416 -3.51
3 0.5465 0.5142 -5.91 0.5146 -5.83
4 0.3807 0.3450 -9.39 0.3455 -9.25
1 1.3614 1.3409 -1.51 1.3402 -1.56
2 2 0.6650 0.6748 1.47 0.6752 1.53
3 0.5465 0.5530 1.18 0.5528 1.15
4 0.3807 0.3907 2.62 0.3909 2.66
1 1.3614 1.3648 0.25 1.3650 0.26
3 2 0.6650 0.6674 0.37 0.6676 0.39
3 0.5465 0.5416 -0.89 0.5416 -0.90
4 0.3807 0.3793 -0.38 0.3794 -0.36
1 1.3614 1.3611 -0.02 1.3611 -0.03
4 2 0.6650 0.6676 0.39 0.6677 0.40
3 0.5465 0.5442 -0.43 0.5441 -0.44
4 0.3807 0.3814 0.16 0.3814 0.18
1 1.3614 1.3595 -0.14 1.3595 -0.14
5 2 0.6650 0.6678 0.42 0.6679 0.43
3 0.5465 0.5452 -0.24 0.5451 -0.25
4 0.3807 0.3822 0.38 0.3822 0.39
1 1.3614 1.3599 -0.11 1.3599 -0.11
6 2 0.6650 0.6677 0.41 0.6678 0.42
3 0.5465 0.5450 -0.29 0.5449 -0.30
4 0.3807 0.3820 0.32 0.3820 0.34
1 1.3614 1.3600 -0.11 1.3599 -0.11
7 2 0.6650 0.6678 0.42 0.6678 0.43
3 0.5465 0.5449 -0.29 0.5448 -0.31
4 0.3807 0.3819 0.32 0.3820 0.33
1 1.3614 1.3600 -0.11 1.3600 -0.11
8 2 0.6650 0.6678 0.42 0.6678 0.43
3 0.5465 0.5449 -0.30 0.5448 -0.31
4 0.3807 0.3819 0.31 0.3820 0.33
1 1.3614 1.3600 -0.11 1.3600 -0.11
9 2 0.6650 0.6678 0.42 0.6678 0.43
3 0.5465 0.5449 -0.30 0.5448 -0.31
4 0.3807 0.3819 0.31 0.3820 0.33
1 1.3614 1.3600 -0.11 1.3600 -0.11
10 2 0.6650 0.6678 0.42 0.6678 0.43
3 0.5465 0.5449 -0.30 0.5448 -0.31
4 0.3807 0.3819 0.31 0.3820 0.33

"Defined as 100*(calculated-reference)/reference
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Table 4-8. Assembly Thermal Flux in Core 2

Order of Assembly Reference Nodal Error® Reconstructed Error®
Perturbation Position
1 0.3920 0.4148 5.80 0.3699 -5.65
0 2 0.1469 0.1269 -13.60 0.1761 19.88
3 0.1557 0.1646 5.71 0.1462 -6.08
4 0.0841 0.0723 -14.06 0.1004 19.42
1 0.3920 0.4111 4.85 0.4082 4.13
1 2 0.1469 0.1395 -5.00 0.1383 -5.81
3 0.1557 0.1467 -5.78 0.1463 -6.05
4 0.0841 0.0759 -9.71 0.0754 -10.33
1 0.3920 0.3867 -1.37 0.3874 -1.19
2 2 0.1469 0.1485 1.11 0.1481 0.82
3 0.1557 0.1577 1.33 0.1579 1.43
4 0.0841 0.0862 2.50 0.0861 2.36
1 0.3920 0.3931 0.26 0.3929 0.22
3 2 0.1469 0.1471 0.11 0.1469 0.02
3 0.1557 0.1545 -0.76 0.1546 -0.72
4 0.0841 0.0837 -0.50 0.0836 -0.57
1 0.3920 0.3921 0.00 0.3921 0.01
4 2 0.1469 0.1471 0.16 0.1470 0.10
3 0.1557 0.1552 -0.30 0.1553 -0.25
4 0.0841 0.0841 0.04 0.0841 -0.02
1 0.3920 0.3916 -0.12 0.3916 -0.12
5 2 0.1469 0.1471 0.18 0.1471 0.13
3 0.1557 0.1555 -0.11 0.1556 -0.07
4 0.0841 0.0843 0.25 0.0843 0.19
1 0.3920 0.3917 -0.09 0.3917 -0.09
6 2 0.1469 0.1471 0.16 0.1471 0.12
3 0.1557 0.1554 -0.16 0.1555 -0.11
4 0.0841 0.0843 0.20 0.0842 0.14
1 0.3920 0.3917 -0.08 0.3917 -0.08
7 2 0.1469 0.1471 0.17 0.1471 0.12
3 0.1557 0.1554 -0.17 0.1555 -0.12
4 0.0841 0.0843 0.19 0.0842 0.13
1 0.3920 0.3917 -0.08 0.3917 -0.08
8 2 0.1469 0.1471 0.17 0.1471 0.12
3 0.1557 0.1554 -0.17 0.1555 -0.12
4 0.0841 0.0843 0.19 0.0842 0.13
1 0.3920 0.3917 -0.08 0.3917 -0.08
9 2 0.1469 0.1471 0.17 0.1471 0.12
3 0.1557 0.1554 -0.17 0.1555 -0.12
4 0.0841 0.0843 0.19 0.0842 0.13
1 0.3920 0.3917 -0.08 0.3917 -0.08
10 2 0.1469 0.1471 0.17 0.1471 0.12
3 0.1557 0.1554 -0.17 0.1555 -0.12
4 0.0841 0.0843 0.19 0.0842 0.13

"Defined as 100*(calculated-reference)/reference
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Figure 4-9. High-Order Reconstructed Flux in Group 1 in Core 2
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4.2.2. Results for the Newly Developed Benchmark Configurations (A, B and C)

As it was for the two configurations discussed in the previous section, the
reference case here is a fine-mesh calculation of the full configuration with a zero current
boundary condition. Six meshes are considered for each material region, giving a total of
60 meshes per assembly and 960 meshes per core. Because of the symmetry, only the
distribution for the left half of the configuration is shown.

The multiplication constant (kefr) for each core (see Figure 3-5) at different
orders of the correction for the nodal cross sections is given in Table 4-9. The
distribution of the reconstructed flux, calculated as specified in section 2-3, is shown in
Figures 4-13 to 4-18. Only the first order reconstructed flux is shown, the higher-order
distributions being almost identical to the reference distribution for each core. It is
interesting to note that, even though the zeroth order (standard GET) ks practically
reproduce the reference value for cores A and C (within 107), or is very close to it as in
case of core B (within 107), it does not approximate well the flux distribution. The
difference is mostly in the fast group, and it is more pronounced in the case of the more
heterogeneous core C. The node-integrated flux from the nodal calculation and the
assembly-integrated reconstructed flux for each group are compared to the reference
results in Tables 4-10 to 4-15. The difference of up to 5% in the node-integrated flux at

the zeroth order is reduced to less than 1% at the third order.
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Table 4-9. K. for Cores A, B and C

Core Kref* Order of K K Kier
correction (mk**)
0 1.0134 0.4
A 1.0130 1 1.0129 -0.1
2 1.0129 -0.1
3 1.0128 -0.2
0 1.0134 10.0
B 1.0034 1 1.0032 -0.2
2 1.0031 -0.1
3 1.0032 -0.2
0 0.9979 1.0
C 0.9969 1 0.9964 -0.5
2 0.9963 -0.6
3 0.9963 -0.6

From full core fine-mesh calculations with 6 meshes per material region

* 1mk=107
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Figure 4-18. Reconstructed Thermal Flux in Core C
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Table 4-10. Assembly Fast Flux in Core A

Order of Assembly Reference Nodal Error® Reconstructed Error
Perturbation Position
1 0.5903 0.5774 -2.19 0.5586 -5.37
2 0.8361 0.8579 2.61 0.8393 0.39
3 0.8516 0.8555 0.46 0.8617 1.19
0 4 0.8258 0.8267 0.11 0.8335 0.93
5 0.7950 0.7924 -0.34 0.7983 0.42
6 0.7892 0.7863 -0.36 0.7926 0.43
7 0.7792 0.7743 -0.63 0.7803 0.14
8 0.7920 0.7892 -0.35 0.7954 0.42
1 0.5903 0.5818 -1.44 0.5814 -1.50
2 0.8361 0.8283 -0.93 0.8290 -0.85
3 0.8516 0.8552 0.42 0.8550 0.40
1 4 0.8258 0.8293 0.41 0.8293 0.42
5 0.7950 0.7984 0.42 0.7983 0.41
6 0.7892 0.7916 0.30 0.7916 0.31
7 0.7792 0.7812 0.25 0.7811 0.24
8 0.7920 0.7934 0.17 0.7934 0.18
1 0.5903 0.5907 0.07 0.5902 -0.02
2 0.8361 0.8305 -0.67 0.8311 -0.60
3 0.8516 0.8496 -0.23 0.8494 -0.26
2 4 0.8258 0.8256 -0.03 0.8257 -0.02
5 0.7950 0.7965 0.18 0.7965 0.18
6 0.7892 0.7909 0.22 0.7910 0.22
7 0.7792 0.7814 0.28 0.7813 0.27
8 0.7920 0.7940 0.24 0.7940 0.25
1 0.5903 0.5892 -0.18 0.5888 -0.26
2 0.8361 0.8326 -0.42 0.8331 -0.36
3 0.8516 0.8513 -0.04 0.8511 -0.06
3 4 0.8258 0.8262 0.05 0.8263 0.05
5 0.7950 0.7963 0.16 0.7963 0.15
6 0.7892 0.7902 0.13 0.7903 0.14
7 0.7792 0.7804 0.16 0.7804 0.15
8 0.7920 0.7929 0.11 0.7929 0.11

*Defined as 100*(calculated-reference)/reference
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Table 4-11. Assembly Thermal Flux in Core A

Order of Assembly Reference Nodal Error® Reconstructed Error
Perturbation Position
1 0.1809 0.1809 -0.04 0.1719 -5.00
2 0.2186 0.2201 0.68 0.2087 -4.52
3 0.2370 0.2385 0.61 0.2419 2.09
0 4 0.2274 0.2282 0.34 0.2313 1.71
5 0.2227 0.2216 -0.47 0.2253 1.20
6 0.2177 0.2169 -0.36 0.2202 1.13
7 0.2178 0.2166 -0.56 0.2200 0.98
8 0.2186 0.2176 -0.46 0.2210 1.09
1 0.1809 0.1791 -0.99 0.1795 -0.77
2 0.2186 0.2159 -1.22 0.2152 -1.53
3 0.2370 0.2381 0.48 0.2383 0.56
1 4 0.2274 0.2284 0.44 0.2284 0.42
5 0.2227 0.2236 0.43 0.2237 0.45
6 0.2177 0.2183 0.28 0.2183 0.25
7 0.2178 0.2184 0.29 0.2185 0.32
8 0.2186 0.2189 0.16 0.2189 0.14
1 0.1809 0.1817 0.45 0.1822 0.71
2 0.2186 0.2163 -1.04 0.2157 -1.30
3 0.2370 0.2366 -0.17 0.2368 -0.09
2 4 0.2274 0.2274 0.01 0.2274 -0.01
5 0.2227 0.2231 0.19 0.2231 0.21
6 0.2177 0.2181 0.19 0.2181 0.17
7 0.2178 0.2185 0.31 0.2185 0.34
8 0.2186 0.2191 0.23 0.2191 0.22
1 0.1809 0.1813 0.21 0.1818 0.47
2 0.2186 0.2168 -0.82 0.2162 -1.08
3 0.2370 0.2371 0.04 0.2373 0.12
3 4 0.2274 0.2276 0.08 0.2275 0.06
5 0.2227 0.2231 0.18 0.2231 0.20
6 0.2177 0.2180 0.11 0.2179 0.08
7 0.2178 0.2182 0.19 0.2183 0.22
8 0.2186 0.2188 0.10 0.2188 0.08

"Defined as 100*(calculated-reference)/reference
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Table 4-12. Assembly Fast Flux in Core B

Order of Assembly Reference Nodal Error® Reconstructed Error
Perturbation Position

1 0.5909 0.5791 -2.01 0.5800 -1.85

2 0.8189 0.8414 2.75 0.8414 2.75

3 0.8099 0.8118 0.24 0.8113 0.18

0 4 0.8255 0.8317 0.75 0.8319 0.78
5 0.7987 0.7934 -0.67 0.7929 -0.72

6 0.8173 0.8172 -0.01 0.8175 0.02

7 0.7947 0.7855 -1.15 0.7851 -1.20

8 0.8151 0.8114 -0.45 0.8113 -0.46

1 0.5909 0.5870 -0.67 0.5814 -1.50

2 0.8189 0.8143 -0.57 0.8290 -0.85

3 0.8099 0.8153 0.67 0.8550 0.40

1 4 0.8255 0.8283 0.34 0.8293 0.42
5 0.7987 0.8007 0.26 0.7983 0.41

6 0.8173 0.8165 -0.10 0.7916 0.31

7 0.7947 0.7944 -0.03 0.7811 0.24

8 0.8151 0.8144 -0.09 0.7934 0.18

1 0.5909 0.5949 0.68 0.5945 0.60

2 0.8189 0.8178 -0.13 0.8185 -0.06

3 0.8099 0.8110 0.14 0.8106 0.09

2 4 0.8255 0.8252 -0.04 0.8254 -0.01
5 0.7987 0.7988 0.02 0.7985 -0.02

6 0.8173 0.8154 -0.23 0.8157 -0.20

7 0.7947 0.7940 -0.09 0.7937 -0.12

8 0.8151 0.8136 -0.19 0.8136 -0.18

1 0.5909 0.5934 0.43 0.5930 0.35

2 0.8189 0.8193 0.05 0.8199 0.12

3 0.8099 0.8124 0.31 0.8120 0.26

3 4 0.8255 0.8258 0.03 0.8261 0.07
5 0.7987 0.7988 0.02 0.7985 -0.02

6 0.8173 0.8150 -0.28 0.8153 -0.25

7 0.7947 0.7933 -0.17 0.7931 -0.20

8 0.8151 0.8127 -0.29 0.8128 -0.28

*Defined as 100*(calculated-reference)/reference

78




Table 4-13. Assembly Thermal Flux in Core B

Order of Assembly Reference Nodal Error® Reconstructed Error
Perturbation Position

1 0.1811 0.1812 0.06 0.1807 -0.24

2 0.2138 0.2159 0.97 0.2167 1.37

3 0.2311 0.2327 0.66 0.2327 0.67

0 4 0.2112 0.2124 0.61 0.2119 0.37
5 0.2290 0.2279 -0.49 0.2282 -0.32

6 0.2092 0.2087 -0.23 0.2082 -0.44

7 0.2284 0.2260 -1.03 0.2263 -0.94

8 0.2254 0.2238 -0.72 0.2238 -0.71

1 0.1811 0.1806 -0.24 0.1810 -0.03

2 0.2138 0.2119 -0.91 0.2112 -1.23

3 0.2311 0.2330 0.82 0.2334 0.98

1 4 0.2112 0.2115 0.15 0.2112 0.02
5 0.2290 0.2299 0.42 0.2302 0.53

6 0.2092 0.2085 -0.33 0.2082 -0.47

7 0.2284 0.2287 0.14 0.2289 0.24

8 0.2254 0.2251 -0.12 0.2250 -0.16

1 0.1811 0.1830 1.04 0.1834 1.29

2 0.2138 0.2126 -0.56 0.2120 -0.84

3 0.2311 0.2319 0.31 0.2322 0.47

2 4 0.2112 0.2107 -0.21 0.2105 -0.33
5 0.2290 0.2294 0.19 0.2297 0.32

6 0.2092 0.2082 -0.44 0.2080 -0.57

7 0.2284 0.2286 0.09 0.2288 0.20

8 0.2254 0.2249 -0.22 0.2248 -0.26

1 0.1811 0.1825 0.79 0.1830 1.04

2 0.2138 0.2130 -0.39 0.2123 -0.67

3 0.2311 0.2323 0.49 0.2326 0.65

3 4 0.2112 0.2109 -0.14 0.2106 -0.26
5 0.2290 0.2294 0.20 0.2297 0.32

6 0.2092 0.2081 -0.50 0.2078 -0.63

7 0.2284 0.2284 0.01 0.2287 0.11

8 0.2254 0.2247 -0.31 0.2246 -0.35

"Defined as 100*(calculated-reference)/reference
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Table 4-14. Assembly Fast Flux in Core C

Order of Assembly Reference Nodal Error® Reconstructed Error
Perturbation Position

1 0.5235 0.5181 -5.01 0.4980 -4.88

2 0.7150 0.7068 -0.22 0.7135 -0.22

3 0.7219 0.7196 -2.97 0.7005 -2.97

0 4 0.8821 0.8763 1.45 0.8953 1.50
5 0.8119 0.8135 -1.24 0.8011 -1.32

6 0.9195 0.9182 2.85 0.9464 2.94

7 0.7841 0.7910 0.22 0.7846 0.06

8 0.8862 0.9010 2.30 0.9066 2.30

1 0.5235 0.5181 -1.04 0.5179 -1.08

2 0.7150 0.7068 -1.14 0.7073 -1.09

3 0.7219 0.7196 -0.32 0.7193 -0.36

1 4 0.8821 0.8763 -0.66 0.8766 -0.62
5 0.8119 0.8135 0.20 0.8131 0.15

6 0.9195 0.9182 -0.14 0.9186 -0.10

7 0.7841 0.7910 0.87 0.7906 0.82

8 0.8862 0.9010 1.66 0.9011 1.68

1 0.5235 0.5235 -0.01 0.5231 -0.08

2 0.7150 0.7099 -0.72 0.7105 -0.63

3 0.7219 0.7198 -0.30 0.7190 -0.40

2 4 0.8821 0.8764 -0.64 0.8772 -0.55
5 0.8119 0.8120 0.02 0.8112 -0.08

6 0.9195 0.9182 -0.14 0.9190 -0.05

7 0.7841 0.7905 0.82 0.7898 0.72

8 0.8862 0.8936 0.83 0.8939 0.87

1 0.5235 0.5216 -0.36 0.5212 -0.44

2 0.7150 0.7101 -0.70 0.7107 -0.61

3 0.7219 0.7203 -0.23 0.7195 -0.33

3 4 0.8821 0.8778 -0.49 0.8785 -0.40
5 0.8119 0.8129 0.12 0.8121 0.02

6 0.9195 0.9188 -0.07 0.9196 0.01

7 0.7841 0.7899 0.74 0.7891 0.64

8 0.8862 0.8926 0.72 0.8930 0.76

*Defined as 100*(calculated-reference)/reference

80




Table 4-15. Assembly Thermal Flux in Core C

Order of Assembly Reference Nodal Error® Reconstructed Error
Perturbation Position
1 0.1604 0.1555 -3.09 0.1550 -3.36
2 0.1873 0.1835 -2.05 0.1846 -1.45
3 0.2200 0.2172 -1.25 0.2164 -1.62
0 4 0.2296 0.2303 0.31 0.2306 0.42
5 0.2491 0.2486 -0.20 0.2486 -0.21
6 0.2382 0.2434 2.19 0.2427 1.89
7 0.2426 0.2442 0.65 0.2449 0.92
8 0.2285 0.2313 1.21 0.2312 1.19
1 0.1604 0.1591 -0.82 0.1593 -0.70
2 0.1873 0.1850 -1.26 0.1846 -1.48
3 0.2200 0.2195 -0.20 0.2198 -0.07
1 4 0.2296 0.2278 -0.78 0.2274 -0.94
5 0.2491 0.2498 0.26 0.2501 0.41
6 0.2382 0.2374 -0.34 0.2370 -0.51
7 0.2426 0.2449 0.92 0.2452 1.07
8 0.2285 0.2322 1.62 0.2321 1.56
1 0.1604 0.1609 0.31 0.1613 0.55
2 0.1873 0.1852 -1.16 0.1845 -1.50
3 0.2200 0.2201 0.07 0.2209 0.40
2 4 0.2296 0.2273 -1.02 0.2265 -1.35
5 0.2491 0.2501 0.38 0.2509 0.70
6 0.2382 0.2369 -0.53 0.2361 -0.86
7 0.2426 0.2456 1.22 0.2464 1.54
8 0.2285 0.2301 0.68 0.2297 0.53
1 0.1604 0.1603 -0.05 0.1607 0.19
2 0.1873 0.1852 -1.15 0.1846 -1.48
3 0.2200 0.2203 0.15 0.2210 0.47
3 4 0.2296 0.2276 -0.88 0.2269 -1.20
5 0.2491 0.2504 0.49 0.2512 0.81
6 0.2382 0.2370 -0.47 0.2363 -0.80
7 0.2426 0.2454 1.16 0.2462 1.47
8 0.2285 0.2298 0.58 0.2295 0.43

*Defined as 100*(calculated-reference)/reference
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Chapter V

CONCLUSION

The high-order homogenization method [5] for improving the accuracy of nodal
diffusion calculations for a reactive system is implemented into a two-group model. The
method is based on the high-order boundary condition perturbation theory, and expands
the homogenized cross sections in terms of the current-to-flux ratio at the node interface.
This expansion makes possible the correction of the homogenized cross sections for the
effect of the core environment in the nodal calculation. The cross section updating
process is performed within the nodal calculation by using precomputed data for each
unique assembly type, together with the current-to-flux ratio at the node interface. That
is, the assembly cross section calculation is decoupled from the nodal calculation. The
reconstructed fine-mesh flux is a natural byproduct of the new homogenization method.

It is shown that the expansion series for the flux, eigenvalue and homogenized
cross section converge in the multigroup case. Two types of assembly typical of BWR
configurations in slab geometry are used to test the convergence in a two-group approach.
The high-order corrected values for the flux, eigenvalue, and homogenized cross sections
are compared to the reference values obtained from fine-mesh diffusion calculations at
the assembly level. It is observed that the number of terms in the expansion series that
needs to be considered to obtain a very good agreement with the reference solution
depends on the magnitude of the perturbation. For small perturbations in the boundary
condition, which is the case when the assembly is placed in a relatively uniform core, a
second order correction seems sufficient to compensate for the error. If the assembly is
considered as part of a core with large gradients of the flux over the core, more than three
terms must be retained in the expansion to obtain an accurate result. In all analyzed
cases, the perturbation method achieves an excellent accuracy: the flux RMS error is less
than 0.5% in both groups, and the reference homogenized cross sections are almost

reproduced. The agreement is also excellent in the case of the discontinuity factors,
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which are within 0.15% of the reference values, even for large perturbations (e.g., ~30%
difference between the unperturbed and the reference values).

A two-group nodal diffusion code with a bilinear intra-nodal flux shape is
developed for the implementation of the high-order homogenization method to two-group
in the context of the generalized equivalence theory (GET). The updating of the nodal
parameters by using the perturbation method does not require repeated fine-mesh
calculations at the assembly level. Only one infinite-medium single-assembly calculation
is performed for each unique assembly type, in order to precompute the required
quantities (the forward flux, the adjoint flux, and a Green’s function) used in estimating
the high-order corrections.

The homogenization method is tested by using as a benchmark four different
types of cores typical of a BWR in slab geometry. Three of these benchmark problems,
are newly developed for this purpose. The nodal calculation is compared to the fine-
mesh reference result by means of the node (assembly) integrated flux. The agreement is
very good. For all of the analyzed configurations the node-integrated flux is within
1.16% of the assembly-integrated reference flux in all nodes for each group. There is a
significant improvement from the zeroth order case (standard GET), in which the node-
averaged flux has a large error (e.g., up to 8% in group 1 and up to 14% in group 2 for
configuration 2).

It is also shown that the reconstructed fine-mesh flux (or equivalently the power
distribution) in the core approximates the reference value very well. The reference flux
distribution is almost reproduced by the third order. In contrast, the zeroth order
reconstructed flux distribution does not approximate the reference result well. An
advantage of the new homogenization method is that not only it provides an excellent
estimate of the global power distribution throughout the core, but it also produces the
detailed (fine-mesh) distribution of the flux (power) inside each assembly with no almost
additional computation effort. Therefore, parameters of importance in reactor operation
such as the thermal limits (e.g., the local peaking factor) are predicted very accurately by
the new method. Another advantage is that the method produces excellent results even
for a simple approximation of the intranodal flux shape such as the bilinear shape used in

the present work.
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5.1 Future Work

The next step will be to implement the high-order homogenization method into a
two-dimensional, and then three-dimensional nodal diffusion model. Also it would be
interesting to consider different types of core configurations such as PWR or PBR, or

even highly heterogeneous, unrealistic configurations, to assess the method’s limitations.

Phase I1I Work

A main difficulty in going form one to two-group in 1-D was the numerical
computation of Green’s function which arise because of the energy group coupling. The
equations for calculating this function will be similar in the 2-D case; the only difference
that might cause impediments might be the treatment of the leakage term when
discretizing these equations. Some difficulty might also arise in determining a surface-
dependent boundary condition (current-to-flux ratio) from node-averaged quantities.
Note that Green’s function is not constant at the node interface. As a first approximation,
the expansion parameter in the 2-D case could be taken as an average over the node
surface, which is consistent with the GET assumption.

A two-group two-dimensional diffusion code needs to be developed to perform
all the required precomputations for each assembly type: the solutions of the forward and
adjoint flux, and the Green’s function. Also, a two-group two-dimensional nodal
diffusion code needs to be developed to perform the nodal calculations.

Heterogeneity in the radial direction is of the main concern as far as the
homogenization is concerned in LWR configurations. Thus, the 2-D development should
take care of most of the homogenization errors. The extension of the method to 3-D
would then involve developing the coarse-mesh (nodal) code in 3-D and using the 2-D
Green’s functions to adjust (correct) the homogenized cross sections for radial neutron

leakage (environment) across each fuel assembly surface.
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Appendix A

Discretization of the Equations for Green’s Function

Let’s consider Eqgs. (2-14) for the four components of the Green’s function

Y, ()?,)?0). The discretization in slab geometry of the first of these equations is shown

here, the procedure is similar for the other three.

[—VDI(X)V +O-rl(i)_iovafl(i);(l()_é)JTll(f’)_éO)_ (A-1)
[(7‘;12 (7?)"' /Atovo'fl (55))(2 (55)]\}’21 (7" X, ) = 5(’? — X, )_ ?.; (7‘0 )

Let the domain (in the x direction) where the equation should be solved be divided into N

meshes, such that each mesh has constant material properties over the mesh. Equation

(A-1) is integrated over a mesh i (see figure below), from Xi.;, to Xi+12. The functions

¥, (%,%,) and ¥,,(¥,%, ) are considered constant over the mesh:

W, (3,5, )= ¥, (i, /) (A-2)
n f1
2 — -&i —}1
—— et
i1 Fue EL Hupp X
1-1 1 +1

Figure A-1. Space Discretization
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Let’s consider the integration of the “leakage” term first:

Xit1/2 2 + —
— _ . _ o _ b~ b~ _
L=~ [ VD -V¥dV = Z;g[DIV‘P \ figdS = —D, A2 +D, A2 (A-3)

Xi-1/2

with ¢ =W, (x..,), @ =W¥(x.,), ¢ =¥,(x), and x,=x,,+A,/2. The
function ¥, (¥,%,) has been renamed and the x, dependence has been dropped for

convenience. The following boundary conditions are considered at the interface of mesh

1 with the adjacent mesh i-1 and i+1, respectively:

X=Xy oL =0,
+ o (A_4)
_ D Pisy =P _ D P — P
A /2 A /2
X=X P =0,
+ A (A_S)
_Dll ¢i (0[ — _D1i+1 (0141 ¢i+1
A /2 A, /2
By solving for ¢, and ¢, in (A-3) and (A-4) one gets:
o = di@i+d,o;
di—l + di
dg +d,.0.,
'+ — i i+ 7 i+ A_6
<01 di + di+1 ( )
If expressions (A-6) for the surface fluxes are used in (A-3) it is obtained:
L= _di—l,i(/’i—l + (di—l,i + di,i+l )(/)i - di,i+] Din (A‘7)
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where d,,,, =2d.d,,,/ (d,+d,,). The use of (A-7) when integrating (A-1) over the mesh

i+l

1 leads to:

- di—l,i\Pll (i -1, J)+ [dH,f +d,, + (Gil - /IOVU}J({ )Ai ]‘*'11 (iaj)_ d, Y (i + l’j) =

4 - o _ . (A3
(O_;lz +10VO_}‘17(; )Ai\PZI(l’J)+5z]' _(00,1(J)

The coupling coefficients d,

i+l

and d,_, have a particular form for the boundary

meshes, depending on the boundary condition. For example, if the boundary condition

for the right boundary (i=N) is:
aJ(xm/z )"’ by =0 (A-9)

then
N a
o == (xi2) (A-10)

Using this expression for ¢, to calculate the current at the boundary as expressed in (A-

3), one gets:

+

J(xi+1/2):_Di % =—2d, ((D:r —®; ): 2d, %J(xi+1/2)+2di(ﬁi (A-11)
2d.
Jx)=———p, (A-12)
1_2Zdi

The leakage term (A-3) becomes:
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2d.,

Ly = J(xm/z )_ J(xifl/Z ) = —cll% +d, ((Pi —Pia ) =
1-2—d,
b
(A-13)
2d.
_di—l,i¢i—1 + —cll"'dm,i (2
1_2Zdi

In this case then (i=N) we have in the leakage term d,

i,i+1

=0 and the coefficient of ¢, in

the leakage term is _2d +d for an inner mesh.

1-2%4
b

s versus d, +d,

l
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Appendix B

Nodal Equations

The two-group diffusion equations to be discretized in slab geometry are shown

below:

VD, (x)-V+ 0, (0, () = 0, (), (x)+ A7, (), (x)o, (x) + vor (), ()]

' " (B-1)
g,8'=12 g+g

where ¢ is the scalar flux, Ais the eigenvalue, D is the diffusion coefficient, o, is the
removal cross section, yis the neutron spectrum, o, is the scattering cross section
from group g’ to group g, and vo ,is the product of the number of neutrons per fission

and the fission cross section, with g as a group index.
The spatial variable x is discretized according to Figure B-1. Equation (B-1) is

integrated over the mesh i from x, ,,, to x,,,,,, with x, the center point. ¢, and f; are
the flux and discontinuity factor on the left boundary of mesh i, whereas ¢, and f;" have
the same meaning, but correspond to the right boundary. The length of meshiis A,, and

@, 1s the flux at the center point. The mesh is chosen such that the material properties

are constant within the region.

By integrating (B-1) over mesh i one obtaines:

Xiv1/2 Xiv1/2

I VD,,-Vo, x)a’x+0' [(p x)dx+0' I(og,(x)dx:

Xi-1/2 Xi-1/2 Xi-1/2

N N (B-2)
/I;(g,i VO Iwg(x)cix +Vo ., Iwg,(x)dx g,g'=12 g+g
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+ - + -
Jia | S i | fia
| | | >
D, (2 Din X
+ - + -
D, @, D, (4
Xi-1 Xi-1/2 Xi Xi+1/2 Xi+1
A;

A
\ 4

Figure B-1. Discretization of the Spatial Variable

The leakage term in Eq. (B-2) can be written as:

) B o = ¢~ (B3
L:_;'[Dg,iVCDg(x)'nSdS:‘]g(xi+1/2)_']g(xi_l/2):_Di A2 0 A 12 o

k

where J stands for current. The boundary condition (current continuity and flux

discontinuity) is expressed by (with the group index dropped for convenience):
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_ Y
X=X frol = e

. ~ (B-4)
_ O —@; —-D @iy —Pin
i - i+l
A2 AL 12
X=X /2 fhel = fi (B-5)

P =Pir __p P =P

A2 "A /2

The surface fluxes corresponding to mesh i are determined from Egs. (B-4) and (B-5) as:

T £ B-6
¢;:%¢i—l+%¢i (B-6)
dif, +d.f. dif, +d.f.
+ di+ i:— di i;
®; %%H"‘#(Pi (B-7)

Cd fLrd S dfio+d,f

where d, = (Dl. /A, ) By using Egs. (B-6) and (B-7) in Eq. (B-3), the leakage term

becomes:
2d,d, 2dd,, S 2dd,, S
== — + ¢171+ - + + + + — - wi
d,+d,\(f71175) d,+d (71 15) 15 di+d 7 fL) fa B-8)
2d.d

i+l

Cd+d (1 S

)¢i+l
A bilinear shape is considered for the flux within the node:

a,x+b,, X, Sx<x,
o(x)= i o (B-9)
a,X+0,, X X=X
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with @, a,, b, and b, constants. The integral of the flux over mesh i in Eq. (B-2) can be

written as:

:J: (p(x)dx = x.)jjf)(x)dx +Xi;f/2¢(x)dx =a, (Ai / 4)()61._1 X, )+ b, (Ai / 2)+ (B-10)

" " (8,4 x +x,) ey, 12)
The coefficients a@,, a,, b, and b, are determined from:

obn)=00, olx)=0,. olv..)=0 (B-11)
as:

alz%, az:(pii_/?’ blzgoi—%xi, b2:¢i—%xi (B-12)
By using Eq. (B-12) in Eq. (B-10) one obtains:
j}p(x)dx:%(%+%+%j:iAi(pwg (B-13)
where

e 2P B P (B-14)
4 2 4

is the average flux in mesh i. Use of (B-8) and (B-13) in (B-2) leads to:
al, Py taio, tal, o, =S,. i=1,..N (B-15)
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where N is the total number of meshes and g a group index. The expressions for the

coefficients in Eq. (B-15) for the interior meshes are shown below; in the boundary

meshes their form depends on the boundary condition imposed.

+ +
af = 2dg,idg,i-1 g,i-1 + dg,i—l g,i-1 Ai o
i-1i + — " ——0,,,
dfi+d, fe doflo+d, fo 4
at 2dg,idg,i+1fg,i+1 n dg,Hl g+l A,

i+l :_d - d + d - d + To_rg,i
g,ifg,Hl + g,i+1fg,i g,ifg,Hl + g,i+1fg,i

2d, d, [ 2, d. . [
-1 N s i+l S 1
af[: f,l g, g, - + _gl g,i+1J g,i - +_,O_rg’i+
dg,ifg,i—l + dg,iflfg,i dg,[fg,Hl +dg,i+1fg,i 2
+ _
dg,ifg,ifl + dg,[fg,iJrl ﬁa
+ - - + rg,i
dg,ifg,[—l + dg,i—lfg,i dg,ifg,iJrl + dg,i+1 g,i 4

_ avg avg avg
Sg’i = Xei [vafg’iqog,i +VO 4 Do ]+ O g iPari
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